Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If((1+i1i)m=1,then find the least positive integral value of m.If (\frac{(1+i}{1-i})^m=1, \text{then find the least positive integral value of m.}

Answer

((1+i1i)m=1(\frac{(1+i}{1-i})^m=1

(1+i1i×1+i1+i)m=1⇒(\frac{1+i}{1-i}×\frac{1+i}{1+i})^m=1

((1+i)21212)m=1⇒(\frac{(1+i)^2}{1^2-1^2})^m=1

(12+i2+2i2)m=1⇒(\frac{1^2+i^2+2i}{2})^m=1

(11+2i2)m=1⇒(\frac{1-1+2i}{2})^m=1

(2i2)m=1⇒(\frac{2i}{2})^m=1

im=1⇒i^m=1

m=4k, where k is some integer.\text{∴\,m=4k, where k is some integer.}

Therefore, the least positive integer is 1. \text{Therefore, the least positive integer is 1. }

Thus, the least positive integral value of m is 4 (= 4 × 1). \text{Thus, the least positive integral value of m is 4 (= 4 × 1). }