Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If 1+cosA1cosA=m2n2,\frac{1+\cos A}{1-\cos A}=\frac{{{m}^{2}}}{{{n}^{2}}}, then tanAtan\, A =

A

±2mnm2+n2\pm \frac{2mn}{{{m}^{2}}+{{n}^{2}}}

B

±2mnm2n2\pm \frac{2mn}{{{m}^{2}}-{{n}^{2}}}

C

m2+n2m2n2\frac{{{m}^{2}}+{{n}^{2}}}{{{m}^{2}}-{{n}^{2}}}

D

m2n2m2+n2\frac{{{m}^{2}}-{{n}^{2}}}{{{m}^{2}}+{{n}^{2}}}

Answer

±2mnm2n2\pm \frac{2mn}{{{m}^{2}}-{{n}^{2}}}

Explanation

Solution

Given, 1+cosA1cosA=m2n2\frac{1+\cos A}{1-\cos A}=\frac{{{m}^{2}}}{{{n}^{2}}}
\Rightarrow cos2A/2sin2A/2=m2n2\frac{{{\cos }^{2}}A/2}{{{\sin }^{2}}A/2}=\frac{{{m}^{2}}}{{{n}^{2}}}
\Rightarrow tan2A2=n2m2{{\tan }^{2}}\frac{A}{2}=\frac{{{n}^{2}}}{{{m}^{2}}}
\Rightarrow tanA2=±nm\tan \frac{A}{2}=\pm \frac{n}{m}
Now, tanA=2tan(A/2)1tan2(A/2)\tan A=\frac{2\tan (A/2)}{1-{{\tan }^{2}}(A/2)}
=±2(n/m)1(n2/m2)=\pm \frac{2(n/m)}{1-({{n}^{2}}/{{m}^{2}})}
=±2nmm2n2=\pm \frac{2nm}{{{m}^{2}}-{{n}^{2}}}