Solveeit Logo

Question

Question: If \(\frac { 1 + 3 \mathrm { p } } { 3 } , \frac { 1 - \mathrm { p } } { 4 } , \frac { 1 - 2 \mathr...

If 1+3p3,1p4,12p2\frac { 1 + 3 \mathrm { p } } { 3 } , \frac { 1 - \mathrm { p } } { 4 } , \frac { 1 - 2 \mathrm { p } } { 2 } are the probabilities of 3 actually exclusive events, then

A

–1/3 ≤p≤2/3

B

-3≤p≤1

C

1/3≤p≤1/2

D

1/3≤p≤13/3

Answer

1/3≤p≤1/2

Explanation

Solution

Let P(1) = 1+3p3\frac { 1 + 3 p } { 3 } , P(2) = , P(3) = 12p2\frac { 1 - 2 p } { 2 }

P(AČBČC) = P(1) + P(2) + P(3)

= 1+3p3+1p4+12p2=4+12p+33p+612p12\frac { 1 + 3 p } { 3 } + \frac { 1 - p } { 4 } + \frac { 1 - 2 p } { 2 } = \frac { 4 + 12 p + 3 - 3 p + 6 - 12 p } { 12 }

= 133p12\frac { 13 - 3 p } { 12 }

0 £ P(1) £ 1 0 £ P(2) £ 1 0 £ P(3) £ 1 0 £

P(AČBČC) £ 1

0 £ 1+3P £ 3 0 £ 1- P £ 4 0 £ 1- 2P £ 2 0 £ 13 -3P £ 12

-1 £ 3p £ 2 -1 £ - p £ 3 -1 £ 2p £ 1 -1 £ 3p £ 13

13p23\frac { - 1 } { 3 } \leq \mathrm { p } \leq \frac { 2 } { 3 } -3 £ p £ 1 12p12\frac { - 1 } { 2 } \leq \mathrm { p } \leq \frac { 1 } { 2 } 13p133\frac { 1 } { 3 } \leq \mathrm { p } \leq \frac { 13 } { 3 }