Solveeit Logo

Question

Question: If \(\frac { 1 + 3 \mathrm { p } } { 3 } , \frac { 1 - \mathrm { p } } { 4 }\) and \(\frac { 1 - 2 ...

If 1+3p3,1p4\frac { 1 + 3 \mathrm { p } } { 3 } , \frac { 1 - \mathrm { p } } { 4 } and 12p2\frac { 1 - 2 \mathrm { p } } { 2 } are the probabilities of three mutually exclusive events, then the set of all values of p is

A

[-3, 13/3]

B

[0, 13/3]

C

[1/3, ½]

D

[1/3, 2/3]

Answer

1/3,½1/3, ½

Explanation

Solution

Let P(1) = 1+3p3,P(B)=1p4\frac { 1 + 3 \mathrm { p } } { 3 } , \mathrm { P } ( \mathrm { B } ) = \frac { 1 - \mathrm { p } } { 4 } and P(3) =

Since A, B and C are mutually exclusive , then

P(AUBUC) = P(1) + P(2) + P(3) =

Also, 0P(A)1,0P(B)1,0P(C)10 \leq \mathrm { P } ( \mathrm { A } ) \leq 1,0 \leq \mathrm { P } ( \mathrm { B } ) \leq 1,0 \leq \mathrm { P } ( \mathrm { C } ) \leq 1 and 0P(AUBUC)10 \leq \mathrm { P } ( \mathrm { AUBUC } ) \leq 1Now, 0P(A)113p230 \leq \mathrm { P } ( \mathrm { A } ) \leq 1 \Rightarrow \frac { - 1 } { 3 } \leq \mathrm { p } \leq \frac { 2 } { 3 }

0P(B)13p10 \leq \mathrm { P } ( \mathrm { B } ) \leq 1 \quad \Rightarrow \quad - 3 \leq \mathrm { p } \leq 1

0P(C)112p120 \leq \mathrm { P } ( \mathrm { C } ) \leq 1 \Rightarrow - \frac { 1 } { 2 } \leq \mathrm { p } \leq \frac { 1 } { 2 }

and 0P(AUBUC)113p1330 \leq \mathrm { P } ( \mathrm { AUBUC } ) \leq 1 \Rightarrow \frac { 1 } { 3 } \leq \mathrm { p } \leq \frac { 13 } { 3 }

Hence, common value is 13p12\frac { 1 } { 3 } \leq \mathrm { p } \leq \frac { 1 } { 2 }