Question
Mathematics Question on Determinants
If 1⋅3+2⋅5+3⋅7+… up to n terms 13+23+33+… up to n terms =59, then the value of n is
Answer
The correct answer is 5
13+23+33….⋅+n3=(2n(n+1))2
1⋅3+2⋅5+3⋅7+……+n terms =
r=1∑nr(2r+1)=r=1∑n(2r2+r)
=62⋅n(n+1)(2n+1)+2n(n+1)
=6n(n+1)(2(2n+1)+3)
=2n(n+1)×3(4n+5)
=2n(n+1)×3(4n+5)4n2(n+1)2=59
⇒25n(n+1)=39(4n+5)
⇒15n(n+1)=18(4n+5)
⇒15n2+15n=72n+90
⇒15n2−57n−90=0⇒5n2−19n−30=0
⇒(n−5)(5n+6)=0
⇒n=5−6 or 5
⇒n=5.