Solveeit Logo

Question

Mathematics Question on Maxima and Minima

If 1(20a)(40a)+1(40a)(60a)++1(180a)(200a)=1256\frac{1}{(20-a)(40-a)} + \frac{1}{(40-a)(60-a)} + \ldots + \frac{1}{(180-a)(200-a)} = \frac{1}{256}, then the maximum value of a is :

A

198

B

202

C

212

D

218

Answer

212

Explanation

Solution

120(120a140a+140a160a++1180a1200a)=1256\frac{1}{20}\left(\frac{1}{20-a} - \frac{1}{40-a} + \frac{1}{40-a} - \frac{1}{60-a} + \ldots + \frac{1}{180-a} - \frac{1}{200-a}\right) = \frac{1}{256}

120(120a1200a)=1256\frac{1}{20}\left(\frac{1}{20-a} - \frac{1}{200-a}\right) = \frac{1}{256}

120180(20a)(200a)=1256\frac{1}{20} \cdot \frac{180}{(20-a)(200-a)} = \frac{1}{256}

(20a)(200a)=9.256(20 - a)(200 - a) = 9.256

_ _ a2220a+1696=0a^2 - 220a + 1696 = 0

a=212,8a = 212, 8
Then the maxixum value of a=212a = 212
So, the correct option is (C): 212