Question
Question: If \(\frac { 1 } { 2 }\) sin<sup>–1</sup> \(\left[ \frac { 3 \sin 2 \theta } { 5 + 4 \cos 2 \theta ...
If 21 sin–1 [5+4cos2θ3sin2θ] = tan–1 x then x =
A
tan 3q
B
3 tan q
C
31 tan q
D
3 cot q
Answer
31 tan q
Explanation
Solution
5+4cos2θ3sin2θ= 5+41+tan2θ(1−tan2θ)3×2tanθ/(1+tan2θ) =9+tan2θ6tanθ
Put tan q = 3 tan f Ž 9+9tan2ϕ18tanϕ = 1+tan2ϕ2tanϕ = sin 2 f
Hence 21. sin–1 (sin 2f) = tan–1 x ; f = tan–1 x
tan–1 (31tanθ) = tan–1 x ; x = 31 tan q