Solveeit Logo

Question

Question: If \(\frac { 1 } { 2 }\) sin<sup>–1</sup> \(\left[ \frac { 3 \sin 2 \theta } { 5 + 4 \cos 2 \theta ...

If 12\frac { 1 } { 2 } sin–1 [3sin2θ5+4cos2θ]\left[ \frac { 3 \sin 2 \theta } { 5 + 4 \cos 2 \theta } \right] = tan–1 x then x =

A

tan 3q

B

3 tan q

C

13\frac { 1 } { 3 } tan q

D

3 cot q

Answer

13\frac { 1 } { 3 } tan q

Explanation

Solution

3sin2θ5+4cos2θ\frac { 3 \sin 2 \theta } { 5 + 4 \cos 2 \theta }= 3×2tanθ/(1+tan2θ)5+4(1tan2θ)1+tan2θ\frac { 3 \times 2 \tan \theta / \left( 1 + \tan ^ { 2 } \theta \right) } { 5 + 4 \frac { \left( 1 - \tan ^ { 2 } \theta \right) } { 1 + \tan ^ { 2 } \theta } } =6tanθ9+tan2θ\frac { 6 \tan \theta } { 9 + \tan ^ { 2 } \theta }

Put tan q = 3 tan f Ž 18tanϕ9+9tan2ϕ\frac { 18 \tan \phi } { 9 + 9 \tan ^ { 2 } \phi } = 2tanϕ1+tan2ϕ\frac { 2 \tan \phi } { 1 + \tan ^ { 2 } \phi } = sin 2 f

Hence 12\frac { 1 } { 2 }. sin–1 (sin 2f) = tan–1 x ; f = tan–1 x

tan–1 (13tanθ)\left( \frac { 1 } { 3 } \tan \theta \right) = tan–1 x ; x = 13\frac { 1 } { 3 } tan q