Question
Mathematics Question on Inverse Trigonometric Functions
If 21≤x≤1, then cos−1x+cos−1(2x+23−3x2)=
A
2π
B
4π
C
3π
D
noneofthese
Answer
3π
Explanation
Solution
cos−1x+cos−1(2x+23−3x2)
Putting x=cosθ in 2nd term, we get
cos−1x+cos−1(2cosθ+23−3cos2θ)
=cos−1x+cos−1(21cosθ+23sinθ)
Now putting 21=rcosα,23=rsinα
=cos−1x+cos−1[rcosαcosθ+rsinαsinθ]
=cos−1x+cos−1[cos(α−θ)][r2=41+43=44=1⇒r=1]
=cos−1+α−θ
=cos−1x+[−cos−1x+3π]=3π
[tanα=rcosαrsinα ⇒α=3π]