Solveeit Logo

Question

Mathematics Question on Principle of Mathematical Induction

If 12310+12239++12103=K210310.\frac {1}{2⋅3^{10}}+\frac {1}{2^2⋅3^9}+⋯+\frac {1}{2^{10}⋅3} = \frac {K}{2^{10}⋅3^{10}}. Then the remainder when KK is divided by 66 is:

A

1

B

2

C

3

D

5

Answer

5

Explanation

Solution

12310+12239++12103=K210310\frac {1}{2⋅3^{10}}+\frac {1}{2^2⋅3^9}+⋯+\frac {1}{2^{10}⋅3} = \frac {K}{2^{10}⋅3^{10}}

12310[(3210)1321]=K210310\frac {1}{2⋅3^{10}}[\frac {(\frac {3}{2}^{10})−1}{\frac 32−1}] = \frac {K}{2^{10}⋅3^{10}}

= 310210210310=K210310\frac {3^{10}−2^{10}}{2^{10}⋅3^{10}} = \frac {K}{2^{10}⋅3^{10}}
K=310210K = 3^{10}−2^{10}
Now,
K = (1 + 2)10 – 210
K = 10C0 + 10C1 2 + 10C2 23 + … + 10C10 210 – 210
K = 10C0 + 10C1 2 + 6λ + 10C9⋅ 29
K = 1 + 20 + 5120 + 6λ
K = 5136 + 6λ + 5
K = 6μ + 5
Where λ, μ ∈ N
∴ remainder = 5

So, the correct option is (D): 5