Solveeit Logo

Question

Question: If \(f:R \rightarrow R,f(x) = 2x - 1\) and \(g:R \rightarrow R,g(x) = x^{2}\) then \((gof)(x)\) equ...

If f:RR,f(x)=2x1f:R \rightarrow R,f(x) = 2x - 1 and g:RR,g(x)=x2g:R \rightarrow R,g(x) = x^{2} then

(gof)(x)(gof)(x) equals

A

2x212x^{2} - 1

B

(2x1)2(2x - 1)^{2}

C

=2x(x1)x(x1)=log2f(x)= 2^{x(x - 1)} \Rightarrow x(x - 1) = \log_{2}f(x)

D

x2+2x1x^{2} + 2x - 1

Answer

(2x1)2(2x - 1)^{2}

Explanation

Solution

x=1f(x)=0=g(2x1)=(2x1)2x = 1 \Rightarrow f(x) = 0 = g(2x - 1) = (2x - 1)^{2}.