Question
Question: If \(f:R \rightarrow R\) satisfies \(f(x + y) = f(x) + f(y),\) for all \(x,y \in R\) and \(f(1) = 7,...
If f:R→R satisfies f(x+y)=f(x)+f(y), for all x,y∈R and f(1)=7, then ∑r=1nf(r) is
A
27n
B
27(n+1)
C
7n(n+1)
D
27n(n+1)
Answer
27n(n+1)
Explanation
Solution
f(x+y)=f(x)+f(y)
put x=1,y=0 ⇒ f(1)=f(1)+f(0)=7
put x=1,y=1 ⇒ f(2)=2.f(1)=2.7; similarly f(3)=3.7 and so on
∴∑r=1nf(r)=7(1+2+3+.....+n) = 27n(n+1).