Solveeit Logo

Question

Question: If \(f:R \rightarrow R\) and \(f^{- 1}(x) = \frac{x + 5}{3}.\) are given by \(f(x) = |x|\)and \(g(x)...

If f:RRf:R \rightarrow R and f1(x)=x+53.f^{- 1}(x) = \frac{x + 5}{3}. are given by f(x)=xf(x) = |x|and g(x)=[x]g(x) = \lbrack x\rbrack for each xR,x \in R, then {xR:g(f(x))f(g(x))}=\{ x \in R:g(f(x)) \leq f(g(x))\} =

A

Z(,0)Z \cup ( - \infty,0)

B

(,0)( - \infty,0)

C

Z

D

R

Answer

R

Explanation

Solution

g(f(x))f(g(x))g(f(x)) \leq f(g(x))g(x)f[x]g(|x|) \leq f\lbrack x\rbrack[x][x]\lbrack|x|\rbrack \leq |\lbrack x\rbrack|.

This is true for xR.x \in R.