Solveeit Logo

Question

Mathematics Question on Vector Algebra

If four distinct points with position vectors a,b,c\overrightarrow a,\overrightarrow b,\overrightarrow c and d\overrightarrow d are coplanar, then [abc][\overrightarrow a \overrightarrow b \overrightarrow c] is equal to

A

[adb]+[dca]+[dbc][\overrightarrow a \overrightarrow d \overrightarrow b]+[\overrightarrow d \overrightarrow c \overrightarrow a]+[\overrightarrow d\overrightarrow b\overrightarrow c]

B

[bcd]+[dac]+[dba][\overrightarrow b \overrightarrow c \overrightarrow d]+[\overrightarrow d \overrightarrow a \overrightarrow c]+[\overrightarrow d\overrightarrow b\overrightarrow a]

C

[dba]+[acc]+[dbc][\overrightarrow d \overrightarrow b \overrightarrow a]+[\overrightarrow a \overrightarrow c \overrightarrow c]+[\overrightarrow d\overrightarrow b\overrightarrow c]

D

[dca]+[bda]+[cdb][\overrightarrow d \overrightarrow c \overrightarrow a]+[\overrightarrow b \overrightarrow d \overrightarrow a]+[\overrightarrow c\overrightarrow d\overrightarrow b]

Answer

[dca]+[bda]+[cdb][\overrightarrow d \overrightarrow c \overrightarrow a]+[\overrightarrow b \overrightarrow d \overrightarrow a]+[\overrightarrow c\overrightarrow d\overrightarrow b]

Explanation

Solution

The Correct Option is (D):[dca]+[bda]+[cdb][\overrightarrow d \overrightarrow c \overrightarrow a]+[\overrightarrow b \overrightarrow d \overrightarrow a]+[\overrightarrow c\overrightarrow d\overrightarrow b]