Solveeit Logo

Question

Question: If four dice are thrown together, then the probability that the sum of the numbers appearing on them...

If four dice are thrown together, then the probability that the sum of the numbers appearing on them is 13, is

A

5216\frac { 5 } { 216 }

B

11216\frac { 11 } { 216 }

C

35324\frac { 35 } { 324 }

D

1432\frac { 1 } { 432 }

Answer

35324\frac { 35 } { 324 }

Explanation

Solution

Total number of elementary events associated to the random experiment of throwing 4 dice is

6×6×6×6=646 \times 6 \times 6 \times 6 = 6 ^ { 4 }

Favourable number of elementary events.

== Coeff. of x13x ^ { 13 } in (x+x2+x3+..x6)4\left( x + x ^ { 2 } + x ^ { 3 } + \ldots \ldots . . x ^ { 6 } \right) ^ { 4 }

== Coeff. of x9x ^ { 9 } in (1+x+x2++x5)4\left( 1 + x + x ^ { 2 } + \ldots \ldots + x ^ { 5 } \right) ^ { 4 }

== Coeff. of x9x ^ { 9 } in (1x61x)4\left( \frac { 1 - x ^ { 6 } } { 1 - x } \right) ^ { 4 }

== Coeff. of x9x ^ { 9 } in (1x6)4(1x)4\left( 1 - x ^ { 6 } \right) ^ { 4 } ( 1 - x ) ^ { - 4 }

== Coeff. of x9x ^ { 9 } in (1x)44( 1 - x ) ^ { - 4 } - 4 coeff. of x3x ^ { 3 } in (1x)4( 1 - x ) ^ { - 4 }

= 220-80=140.

Hence, required probability =14064=35324= \frac { 140 } { 6 ^ { 4 } } = \frac { 35 } { 324 }