Solveeit Logo

Question

Physics Question on Units and measurement

If force (F)(F) , work (W)(W) and velocity (V)(V) are taken as fundamental quantities, then the dimensional formula of time (T)(T) is

A

[WFv][WFv]

B

[WFv1][WFv^{-1}]

C

[W1F1v][W^{-1}F^{-1}v]

D

[WF1v1][WF^{-1}v^{-1}]

Answer

[WF1v1][WF^{-1}v^{-1}]

Explanation

Solution

Let TFaWbvcT \propto F^{a} \,W^{b} \,v^{c} \ldots (i) [T]=[MLT2]a[ML2T2]b[LT1]c{[T]=\left[M L T^{-2}\right]^{a}\left[M L^{2} T^{-2}\right]^{b}\left[L T^{-1}\right]^{c}} [T1]=[Ma+b][La+2b+c][T2a2bc]{\left[T^{1}\right]=\left[M^{a+b}\right]\left[L^{a+2 b+c}\right]\left[T^{-2 a-2 b-c}\right]} Comparing the powers, we get a+b=0(ii)a+b=0 \ldots (ii) a+2b+c=0(iii)a+2 b+c=0 \ldots (iii) 2a2bc=1(iv)-2 a-2 b-c=1 \ldots (iv) Solving Eqs. (ii), (iii) and (iv), we get a=1,b=1,c=1a=-1, \,b=-1,\, c=-1 Therefore, from E (i), [T]=k[F1W1v1][T]=k\left[F^{-1} \,W^{1} \,v^{-1}\right] Taking k=1k=1 in SI system, we have [T]=[WF1v1][T]=\left[W F^{-1} v^{-1}\right]