Solveeit Logo

Question

Physics Question on physical world

If force(F)force (F), velocity(V)velocity (V) and time(T)time (T) are taken as fundamental units, then the dimensions of mass are

A

[FVT1][FVT^{-1}]

B

[FVT2][FVT^{-2}]

C

[FV1T1][FV^{-1}T^{-1}]

D

[FV1T][FV^{-1}T]

Answer

[FV1T][FV^{-1}T]

Explanation

Solution

Let mass mFaVbTcm \propto F^aV^bT^c or m=kFaVbTc(i)m=kF^aV^bT^c \ldots (i) where kk is a dimensionless constant and aa, bb and cc are the exponents. Writing dimensions on both sides, we get [ML0T0]=[MLT2]a[LT1]b[T]c[ML^0T^0]=[MLT^{-2}]^a[LT^{-1}]^b[T]^c [ML0T0]=[MaLa+bT2ab+c][ML^0T^0]=[M^aL^{a+b}T^{-2a-b+c}] Applying the principle of homogeneity of dimensions, we get a=1(ii)a=1 \ldots (ii) a+b=0(iii)a+b=0 \ldots (iii) 2ab+c=0(iv)-2a-b+c=0 \ldots (iv) Solving eqns. (ii)(ii), (iii)(iii) and (iv)(iv), we get a=1a= 1, b=1b = -1, c=1c = 1 From eqn. (i)(i), [m]=[FV1T][m] = [FV^{-1}T]