Solveeit Logo

Question

Question: If for x ∈ R, \(\frac{1}{3}\)\<\(\frac{x^{2} - 2x + 4}{x^{2} + 2x + 4}\)\< 3, then \(\frac{9 \cdot 3...

If for x ∈ R, 13\frac{1}{3}<x22x+4x2+2x+4\frac{x^{2} - 2x + 4}{x^{2} + 2x + 4}< 3, then 932x63x+4932x+63x+4\frac{9 \cdot 3^{2x} - 6 \cdot 3^{x} + 4}{9 \cdot 3^{2x} + 6 \cdot 3^{x} + 4} lies between –

A

12\frac{1}{2}and 2

B

13\frac{1}{3}and 3

C

0 and 2

D

None of these

Answer

13\frac{1}{3}and 3

Explanation

Solution

932x63x+4932x+63x+4\frac{9 \cdot 3^{2x} - 6 \cdot 3^{x} + 4}{9 \cdot 3^{2x} + 6 \cdot 3^{x} + 4}=(3(x+1))22(3(x+1))+4(3(x+1))2+2(3(x+1))+4\frac{(3^{(x + 1)})^{2} - 2(3^{(x + 1)}) + 4}{(3^{(x + 1)})^{2} + 2(3^{(x + 1)}) + 4}

= t22t+4t2+2t+4\frac{t^{2} - 2t + 4}{t^{2} + 2t + 4} (where t = 3x + 1) …..(1)

Since, 13\frac{1}{3}< x22x+4x2+2x+4\frac{x^{2} - 2x + 4}{x^{2} + 2x + 4}< 3

∴ From (1), the given expression lies between 1/3 and 3.