Solveeit Logo

Question

Mathematics Question on Differentiability

If for xϵ(0,14),x \epsilon \left(0, \frac{1}{4}\right) , the derivative of tan1(6xx19x3)\tan^{-1} \left(\frac{6x \sqrt{x}}{1-9x^{3}}\right) is x.g(x)\sqrt{x} . g(x), then g(x)g(x) equals :

A

3xx19x3\frac{3x \sqrt{x}}{1 - 9x^3}

B

3x19x3\frac{3x }{1 - 9x^3}

C

31+9x3\frac{3 }{1 + 9x^3}

D

91+9x3\frac{9 }{1 + 9x^3}

Answer

91+9x3\frac{9 }{1 + 9x^3}

Explanation

Solution

f(x)=2tan1(3xx)f \left(x\right) = 2 \tan^{-1}\left(3x\sqrt{x}\right)
For x (0,14)\in\left(0, \frac{1}{4}\right)
f(x)=9x1+9x3f'\left(x\right) = \frac{9\sqrt{x}}{1+9x^{3}}
g(x)=91+9x3g\left(x\right) = \frac{9}{1+9x^{3}}