Solveeit Logo

Question

Question: If for two vector \(\overset{\rightarrow}{A}\) and \(\overset{\rightarrow}{B}\), sum \((\overset{\ri...

If for two vector A\overset{\rightarrow}{A} and B\overset{\rightarrow}{B}, sum (A+B)(\overset{\rightarrow}{A} + \overset{\rightarrow}{B}) is perpendicular to the difference (AB)(\overset{\rightarrow}{A} - \overset{\rightarrow}{B}). The ratio of their magnitude is

A

1

B

2

C

3

D

None of these

Answer

1

Explanation

Solution

(A+B)(\overset{\rightarrow}{A} + \overset{\rightarrow}{B}) is perpendicular to (AB)(\overset{\rightarrow}{A} - \overset{\rightarrow}{B}). Thus

(A+B)(\overset{\rightarrow}{A} + \overset{\rightarrow}{B}).(AB)(\overset{\rightarrow}{A} - \overset{\rightarrow}{B}) = 0

or A2+B.AA.BB2=0A^{2} + \overset{\rightarrow}{B} ⥂ .\overset{\rightarrow}{A} - \overset{\rightarrow}{A}.\overset{\rightarrow}{B} - B^{2} = 0

Because of commutative property of dot product A.B=B.A\overset{\rightarrow}{A}.\overset{\rightarrow}{B} = \overset{\rightarrow}{B}.\overset{\rightarrow}{A}

\therefore A2B2=0A^{2} - B^{2} = 0 or A=BA = B

Thus the ratio of magnitudes A/B = 1