Solveeit Logo

Question

Mathematics Question on Determinants

If for the non-singular matrix A,A2=IA, A^{2} = I, then find A1A^{-1}.

A

AA

B

II

C

OO

D

None of these

Answer

AA

Explanation

Solution

Given, A2=IA^{2} = I Since, A is non-singular matrix A0,so,A1\therefore\quad\left|A\right|\ne0, so, A^{-1} exists. Multiplying by A1A^{-1} on both sides, we get A1(A2)=A1(I)A^{-1}\left(A^{2}\right)=A^{-1}\left(I\right) (A1A)A=A1IA=A1(A1A=I)\Rightarrow\quad\left(A^{-1}A\right)A=A^{-1} \Rightarrow\, IA=A^{-1} \quad\left(\because\quad A^{-1}A=I\right) A1=A(IA=A)\therefore\quad A^{-1}=A \quad\left(\because\quad IA=A\right)