Solveeit Logo

Question

Mathematics Question on Application of derivatives

If for the curve y=1+bxx2y = 1 + bx - x^2, the tangent at (12)(1 - 2) is parallel to xx-axis, then b=b =

A

2

B

-2

C

1

D

-1

Answer

2

Explanation

Solution

y=1+bxx2y = 1 + bx - x^2,
dydx=b2x\frac{dy}{dx} = b - 2x
Now, dydx(1,2)=b2 \frac{dy}{dx}|_{\left(1, -2\right) } = b-2
Since, tangent at (l, -2) Is parallel to x-axis
dydx(1,2)=0\therefore \:\: \frac{dy}{dx}|_{\left(1, -2\right)} = 0
b2=0b=2\Rightarrow b- 2 = 0 \Rightarrow b= 2