Solveeit Logo

Question

Question: If for the complex numbers z<sub>1</sub>& z<sub>2</sub> \(|1–{\overline{z}}_{1}z_{2}|^{2}\)– \| z<s...

If for the complex numbers z1& z2

1z1z22|1–{\overline{z}}_{1}z_{2}|^{2}– | z1 – z2|2 = k (1 – | z |2) (1 – |z2|2), then k equals –

A

1

B

–1

C

2

D

4

Answer

1

Explanation

Solution

Sol. (1z1z2)\left( \overline{1–\overline{z_{1}}}z_{2} \right)– (z1 – z2)(z1z2)\left( \overline{z_{1}–z_{2}} \right)

= (1z1z2)\left( 1–\overline{z_{1}z_{2}} \right) – (z1 – z2)(z1z2)\left( \overline{z_{1}–z_{2}} \right)

= (1z1z2)\left( 1–z_{1}{\overline{z}}_{2} \right) – (z1 – z2)(z1z2)\left( {\overline{z}}_{1}–{\overline{z}}_{2} \right)

=1 z1z2{\overline{z}}_{1}z_{2}z1z2z_{1}{\overline{z}}_{2}+ z1z2{\overline{z}}_{1}z_{2}z1z1z_{1}{\overline{z}}_{1}+ z2z1z_{2}{\overline{z}}_{1}+ z1z2z_{1}{\overline{z}}_{2}z2z2z_{2}{\overline{z}}_{2}

= 1+| z1 |2 | z2|2 – | z1 |2 – z22|z_{2}^{2}|= (1 – | z1 |2) (1 – | z |2)

\ k = 1