Question
Mathematics Question on permutations and combinations
If for some m,n; 6Cm+2(6Cm+1)+6Cm+2>8C3 and n−1P3⋅nP4=1:8, then nPm+1+n+1Cm is equal to
A
380
B
376
C
384
D
372
Answer
372
Explanation
Solution
Solve the combination equation. Given:
6Cm+2(6Cm+1)+6Cm+2=8×8C3.
First, calculate 8C3:
8C3=3!(8−3)!8!=3×2×18×7×6=56.
So,
6Cm+2(6Cm+1)+6Cm+2=8×56=448.
Using values of m that satisfy this equation, we find m=2.
Solve the permutation ratio equation. Given:
nP4n−1P3=81.
This implies:
n−1P3=8nP4.
After evaluating this ratio, we find n=8.
Calculate nPm+1+n+1Cm. Now, m=2 and n=8:
nPm+1=8P3=(8−3)!8!=18×7×6=336.
n+1Cm=9C2=29×8=36.
Thus,
nPm+1+n+1Cm=336+36=372.
Therefore, the answer is: 372