Solveeit Logo

Question

Mathematics Question on permutations and combinations

If for some m,nm, n; 6Cm+2(6Cm+1)+6Cm+2>8C3^6C_m + 2\left(^6C_{m+1}\right) + ^6C_{m+2} > ^8C_3 and n1P3nP4=1:8^{n-1}P_3 \cdot ^nP_4 = 1 : 8, then nPm+1+n+1Cm^nP_{m+1} + ^{n+1}C_m is equal to

A

380

B

376

C

384

D

372

Answer

372

Explanation

Solution

Solve the combination equation. Given:

6Cm+2(6Cm+1)+6Cm+2=8×8C3.^6C_m + 2 \left(^6C_{m+1}\right) + ^6C_{m+2} = 8 \times ^8C_3.

First, calculate 8C3^8C_3:

8C3=8!3!(83)!=8×7×63×2×1=56.^8C_3 = \frac{8!}{3!(8 - 3)!} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56.

So,

6Cm+2(6Cm+1)+6Cm+2=8×56=448.^6C_m + 2(^6C_{m+1}) + ^6C_{m+2} = 8 \times 56 = 448.

Using values of mm that satisfy this equation, we find m=2m = 2.

Solve the permutation ratio equation. Given:

n1P3nP4=18.\frac{n-1P_3}{nP_4} = \frac{1}{8}.

This implies:

n1P3=nP48.n-1P_3 = \frac{nP_4}{8}.

After evaluating this ratio, we find n=8n = 8.

Calculate nPm+1+n+1CmnP_{m+1} + n^{+1}C_m. Now, m=2m = 2 and n=8n = 8:

nPm+1=8P3=8!(83)!=8×7×61=336.nP_{m+1} = ^8P_3 = \frac{8!}{(8 - 3)!} = \frac{8 \times 7 \times 6}{1} = 336.

n+1Cm=9C2=9×82=36.n+1C_m = ^9C_2 = \frac{9 \times 8}{2} = 36.

Thus,

nPm+1+n+1Cm=336+36=372.nP_{m+1} + n^{+1}C_m = 336 + 36 = 372.

Therefore, the answer is: 372