Solveeit Logo

Question

Question: If for real values of x, \(x^{2} - 3x + 2 > 0\) and \(x^{2} - 3x - 4 \leq 0\), Then...

If for real values of x, x23x+2>0x^{2} - 3x + 2 > 0 and x23x40x^{2} - 3x - 4 \leq 0,

Then

A

1x<1- 1 \leq x < 1

B

1x<4- 1 \leq x < 4

C

1x<1- 1 \leq x < 1 or 2<x42 < x \leq 4

D

2<x42 < x \leq 4

Answer

1x<1- 1 \leq x < 1 or 2<x42 < x \leq 4

Explanation

Solution

x23x+2>0x^{2} - 3x + 2 > 0 or (x1)(x2)>0(x - 1)(x - 2) > 0

x(,1)(2,)\mathbf{x}\mathbf{\in}\mathbf{(}\mathbf{- \infty}\mathbf{,1)}\mathbf{\cup}\mathbf{(2,}\mathbf{\infty}\mathbf{)} …..(i)

Again x23x40x^{2} - 3x - 4 \leq 0 or (x4)(x+1)0(x - 4)(x + 1) \leq 0

x[1,4]x \in \lbrack - 1,4\rbrack …..(ii)

From eq. (i) and (ii), x[1,1)(24]x \in \lbrack - 1,1) \cup (24\rbrack1x<1- 1 \leq x < 1 or

2<x42 < x \leq 4