Solveeit Logo

Question

Mathematics Question on Continuity

If for p ≠ q ≠ 0, the function
f(x)=p(729+x)37729+qx39f(x) = \frac{{^{\sqrt[7]{p(729 + x)-3}}}}{{^{\sqrt[3]{729 + qx} - 9}}}
is continuous at x = 0, then

A

7pqf(0)1=07pq f(0)-1 = 0

B

63qf(0)p2=063qf (0)-p^2 = 0

C

21qf(0)p2=021qf(0) - p^2 = 0

D

7pqf(0)9=07pqf(0)-9 = 0

Answer

63qf(0)p2=063qf (0)-p^2 = 0

Explanation

Solution

The correct answer is (B) : 63qf(0)p2=063qf (0)-p^2 = 0
f(x)=p(729+x)37729+qx39f(x) = \frac{{^{\sqrt[7]{p(729 + x)-3}}}}{{^{\sqrt[3]{729 + qx} - 9}}}
For continuity at x = 0, limx0f(x)=f(0)\lim_{{x \to 0}} f(x) = f(0)
Now,
limx0f(x)=limx0p(729+x)73729+qx39\therefore \lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} \frac{{\sqrt[7]{p(729+x)} - 3}}{{\sqrt[3]{729 + qx }- 9}}
⇒ p = 3 (To make indeterminant form)
So,
limx0f(x)=limx0(37+3x)173(729+qx)139\lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} \frac{(3^7+3x)^{\frac{1}{7}}-3}{(729+qx)^{\frac{1}{3}}-9}
limx03[(1+x36)171]9[(1+q729)131]\lim_{{x \to 0}} \frac{3[(1+\frac{x}{3^6})^{\frac{1}{7}}-1]}{9[(1+\frac{q}{729})^{\frac{1}{3}}-1]}
=13.17.13613.q729= \frac{1}{3}.\frac{\frac{1}{7}.\frac{1}{3^6}}{\frac{1}{3}.\frac{q}{729}}
f(0)=17q∴ f(0) = \frac{1}{7q}