Question
Mathematics Question on Continuity
If for p ≠ q ≠ 0, the function
f(x)=3729+qx−97p(729+x)−3
is continuous at x = 0, then
A
7pqf(0)−1=0
B
63qf(0)−p2=0
C
21qf(0)−p2=0
D
7pqf(0)−9=0
Answer
63qf(0)−p2=0
Explanation
Solution
The correct answer is (B) : 63qf(0)−p2=0
f(x)=3729+qx−97p(729+x)−3
For continuity at x = 0, limx→0f(x)=f(0)
Now,
∴limx→0f(x)=limx→03729+qx−97p(729+x)−3
⇒ p = 3 (To make indeterminant form)
So,
limx→0f(x)=limx→0(729+qx)31−9(37+3x)71−3
limx→09[(1+729q)31−1]3[(1+36x)71−1]
=31.31.729q71.361
∴f(0)=7q1