Solveeit Logo

Question

Question: If for non-zero x, \(af\left( x \right) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\) , whe...

If for non-zero x, af(x)+bf(1x)=1x5af\left( x \right) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5 , where aba \ne b , find f(x)f\left( x \right) .

Explanation

Solution

We can replace the xxin the equation with 1x\dfrac{1}{x} . Then we get 2 equations. Then we can multiply the equations with a or b to get the term abf(1x)abf\left( {\dfrac{1}{x}} \right) in both the equations. Then we can take their difference. After simplification, we can write the resulting equation in terms of f(x)f\left( x \right) . Thus, we can obtain the required value of the function.

Complete step-by-step answer:
It is given that af(x)+bf(1x)=1x5af\left( x \right) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5 …. (1)
As x is not equal to zero, we can substitute 1x\dfrac{1}{x} in the place of xx. So, we get,
af(1x)+bf(11x)=11x5af\left( \dfrac{1}{x} \right) + bf\left( {\dfrac{1}{\dfrac{1}{x}}} \right) = \dfrac{1}{\dfrac{1}{x}} - 5
On simplification, we get,
af(1x)+bf(x)=x5\Rightarrow af\left( {\dfrac{1}{x}} \right) + bf\left( x \right) = x - 5 … (2)
Now we can multiply (1) with a. Then we obtain,
a2f(x)+abf(1x)=a(1x5){a^2}f\left( x \right) + abf\left( {\dfrac{1}{x}} \right) = a\left( {\dfrac{1}{x} - 5} \right)
On simplification, we get,
a2f(x)+abf(1x)=ax5a\Rightarrow {a^2}f\left( x \right) + abf\left( {\dfrac{1}{x}} \right) = \dfrac{a}{x} - 5a … (3)
Now we can multiply equation (2) with b. So, we get,
abf(1x)+b2f(x)=b(x5)\Rightarrow abf\left( {\dfrac{1}{x}} \right) + {b^2}f\left( x \right) = b\left( {x - 5} \right)
On simplification, we get,
abf(1x)+b2f(x)=bx5b\Rightarrow abf\left( {\dfrac{1}{x}} \right) + {b^2}f\left( x \right) = bx - 5b …. (4)
Now subtract equation (4) from equation (3)

abf(1x)+a2f(x)=ax5a ()abf(1x)+b2f(x)=bx5b a2f(x)b2f(x)=ax5a(bx5b)  \Rightarrow abf\left( {\dfrac{1}{x}} \right) + {a^2}f\left( x \right) = \dfrac{a}{x} - 5a \\\ \underline {\left( - \right)abf\left( {\dfrac{1}{x}} \right) + {b^2}f\left( x \right) = bx - 5b} \\\ {a^2}f\left( x \right) - {b^2}f\left( x \right) = \dfrac{a}{x} - 5a - \left( {bx - 5b} \right) \\\

On simplification, we get,
(a2b2)f(x)=ax5abx+5b\Rightarrow \left( {{a^2} - {b^2}} \right)f\left( x \right) = \dfrac{a}{x} - 5a - bx + 5b
On dividing both sides of the equation with (a2b2)\left( {{a^2} - {b^2}} \right) and taking the common factors from numerator, we get,
f(x)=axbx5(ab)(a2b2)\Rightarrow f\left( x \right) = \dfrac{{\dfrac{a}{x} - bx - 5\left( {a - b} \right)}}{{\left( {{a^2} - {b^2}} \right)}}
Now we can multiply the numerator and denominator with x. so we will get,
f(x)=abx25x(ab)x(a2b2)\Rightarrow f\left( x \right) = \dfrac{{a - b{x^2} - 5x\left( {a - b} \right)}}{{x\left( {{a^2} - {b^2}} \right)}}
Now we have the value of f(x)f\left( x \right) which is dependent on the variable x. So, the required function is,
f(x)=abx25x(ab)x(a2b2)f\left( x \right) = \dfrac{{a - b{x^2} - 5x\left( {a - b} \right)}}{{x\left( {{a^2} - {b^2}} \right)}} , x=0x = 0

Note: We must substitute the 1x\dfrac{1}{x} in the place of xx, only inside the function and corresponding the values. Then we must change all the x in the equation to 1x\dfrac{1}{x} . We must never take the value of x equal to 1x\dfrac{1}{x} while simplifying the equation. We must make sure that the function f(x)f\left( x \right) must contain only the variable x and constants. As the denominator is a multiple of x, we must note that the function is not defined when x is equal to zero. But as it is given in the question that x is non zero, this will be the required function.