Question
Question: If for non-zero \(x\) \(a f ( x ) + b f \left( \frac { 1 } { x } \right) = \frac { 1 } { x } - 5\...
If for non-zero x af(x)+bf(x1)=x1−5 where ∫12f(x)dx=
A
(a2+b2)1[alog2−5a+27b]
B
(a2−b2)1[alog2−5a+27b]
C
(a2−b2)1[alog2−5a−27b]
D
(a2+b2)1[alog2−5a−27b]
Answer
(a2−b2)1[alog2−5a+27b]
Explanation
Solution
af(x)+bf(x1)=x1−5 (For eachx=0) …..(i)
Replacing x by af(x1)+bf(x)=x−5 …..(ii)
Eliminating f(x1)from (i) and (ii), we get
(a2−b2)f(x)=xa−bx−5a+5b
⇒ (a2−b2)∫12f(x)dx=[(alog∣x∣−2bx2−5(a−b)x)]12
=alog2−2b−10(a−b)−alog1+2b+5(a−b)
=alog2−5a+27b
⇒ ∫12f(x)dx=a2−b21[alog2−5a+27b].