Solveeit Logo

Question

Question: If for \(n = 4\), the approximate value of integral \(\int_{1}^{9}{x^{2}dx}\) by Trapezoidal rule is...

If for n=4n = 4, the approximate value of integral 19x2dx\int_{1}^{9}{x^{2}dx} by Trapezoidal rule is 2[12(1+92)+α2+β2+72]2\left\lbrack \frac{1}{2}(1 + 9^{2}) + \alpha^{2} + \beta^{2} + 7^{2} \right\rbrack, then

A

α=1,6mu6muβ=3\alpha = 1,\mspace{6mu}\mspace{6mu}\beta = 3

B

α=2,6mu6muβ=4\alpha = 2,\mspace{6mu}\mspace{6mu}\beta = 4

C

α=3,6mu6muβ=5\alpha = 3,\mspace{6mu}\mspace{6mu}\beta = 5

D

α=4,6mu6muβ=6\alpha = 4,\mspace{6mu}\mspace{6mu}\beta = 6

Answer

α=3,6mu6muβ=5\alpha = 3,\mspace{6mu}\mspace{6mu}\beta = 5

Explanation

Solution

h=ban=914=2h = \frac{b - a}{n} = \frac{9 - 1}{4} = 2

x0=1x_{0} = 1,x1=x0+nh=1+1.2=3x_{1} = x_{0} + nh = 1 + 1.2 = 3, y0=1,6mu6muy1=9,6mu6muy2=25,6mu6muy3=49,6mu6muy4=81y_{0} = 1,\mspace{6mu}\mspace{6mu} y_{1} = 9,\mspace{6mu}\mspace{6mu} y_{2} = 25,\mspace{6mu}\mspace{6mu} y_{3} = 49,\mspace{6mu}\mspace{6mu} y_{4} = 81

By trapezoidal rule,

abf(x)dx=h2[(y0+y4)+2(y1+y2+y3)]\int_{a}^{b}{f(x)dx} = \frac{h}{2}\left\lbrack (y_{0} + y_{4}) + 2(y_{1} + y_{2} + y_{3}) \right\rbrack

=22[(1+81)+2(9+25+49)]=2[12(1+92)+(32+52+72)]= \frac{2}{2}\left\lbrack (1 + 81) + 2(9 + 25 + 49) \right\rbrack = 2\left\lbrack \frac{1}{2}(1 + 9^{2}) + (3^{2} + 5^{2} + 7^{2}) \right\rbrack

Obvious from above equation, α=3,6mu6muβ=5\alpha = 3,\mspace{6mu}\mspace{6mu}\beta = 5.