Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If for complex numbers (z1(z_1 and z2) z_2) arg (z1z2)(z_1 - z_2) = 0, then z1z2| z_1 - z_2| is equal to

A

z1+z2|z_1| + |z_2|

B

z1z2|z_1| - |z_2|

C

z1z2|\,|z_1| - |z_2|\,|

D

00

Answer

z1z2|\,|z_1| - |z_2|\,|

Explanation

Solution

We have z1z22=z12+z222z1z2cos\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| cos (θ1θ2)\left(\theta_{1}-\theta_{2}\right) where θ1=arg.z1,θ2=arg.z2\theta_{1}=arg. z_{1}, \theta_{2}=arg. z_{2} Since arg.z1z2=0arg. \left|z_{1}-z_{2}\right|=0 z1z22=z12+z222z1z2\therefore \left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| =(z1z22)=\left(\left|z_{1}\right|-\left|z_{2}\right|^{2}\right) z1z2=z1z2\therefore \left|z_{1}-z_{2}\right|=|\left|z_{1}\right|-\left|z_{2}\right||