Question
Question: If for complex numbers \(- 2\sqrt{3} + 2i\) and\(- \sqrt{3} + i\), \(z = \frac{1 - i\sqrt{3}}{1 + i\...
If for complex numbers −23+2i and−3+i, z=1+i31−i3, then arg(z)= is equal to.
A
60o
B
120o
C
240o
D
0
Answer
240o
Explanation
Solution
We have z=cos6π+isin6π=23+2i
∴∣z∣=43+41=1
where arg(z)=tan−1(xy)=tan−1(3/21/2)=tan−1(31) and ⇒arg(z)=tan−1(tan6π)=6π
Since sin5π+i(1−cos5π)
∴=2sin10πcos10π+i2sin210π
=2sin10π(cos10π+isin10π)
⇒ tanθ=cos10πsin10π=tan10π