Solveeit Logo

Question

Question: If for any 2 × 2 square matrix A, A (adjA) = \(\left[ \begin{matrix} 8 & 0 \\\ 0 & 8 \\\ \end{...

If for any 2 × 2 square matrix A, A (adjA) = [80 08 ]\left[ \begin{matrix} 8 & 0 \\\ 0 & 8 \\\ \end{matrix} \right] then write the value of det [A].

Explanation

Solution

Take a general 2 × 2 square matrix A = [qb cd ]\left[ \begin{matrix} \text{q} & \text{b} \\\ \text{c} & \text{d} \\\ \end{matrix} \right] then find its adjoint and multiply both of them to get the solution.

Complete step by step solution: Given: A (adjA) = [80 08 ]\left[ \begin{matrix} 8 & 0 \\\ 0 & 8 \\\ \end{matrix} \right]
First of all we should know how to find adjoint of a given matrix.
Let A=[Qij]\text{A}=[{{\text{Q}}_{\text{ij}}}] be a square matrix of order n. The adjoint of a matrix A is the transpose of the cofactor matrix of A. It is denoted by adj A.
so now, let A = [qb cd ]\left[ \begin{matrix} \text{q} & \text{b} \\\ \text{c} & \text{d} \\\ \end{matrix} \right] be a 2 × 2 square matrix.
We know,
Cofactor of aij=(1)i+j{{\text{a}}_{\text{ij}}}={{(-1)}^{\text{i}+\text{j}}} × the number we get by removing column and row of designated element in a matrix
Now, cofactor of Q = (1)1+1{{(-1)}^{\text{1}+\text{1}}}d = d
cofactor of b = (1)1+2{{(-1)}^{\text{1}+\text{2}}}c = −c
cofactor of c = (1)2+1{{(-1)}^{\text{2}+\text{1}}}b = −b
and cofactor of d = (1)2+2{{(-1)}^{\text{2}+\text{2}}}Q = a
Now, cofactor matrix of A=[dc ba ]\text{A}=\left[ \begin{matrix} \text{d} & -\text{c} \\\ -\text{b} & \text{a} \\\ \end{matrix} \right]
Now adjA=[dc ba ]\text{A}=\left[ \begin{matrix} \text{d} & -\text{c} \\\ -\text{b} & \text{a} \\\ \end{matrix} \right] {since adjA is transpose of co-factor matrix}
so, adjA=[db ca ]\text{A}=\left[ \begin{matrix} \text{d} & -\text{b} \\\ -\text{c} & \text{a} \\\ \end{matrix} \right]
Now we will have to find A(adj A)
A(adjA)=[ab cd ][db ca ]\text{A}(\text{adjA})=\left[ \begin{matrix} \text{a} & \text{b} \\\ \text{c} & \text{d} \\\ \end{matrix} \right]*\left[ \begin{matrix} \text{d} & -\text{b} \\\ -\text{c} & \text{a} \\\ \end{matrix} \right]
[80 08 ]=[ab cd ][db ca ]\left[ \begin{matrix} 8 & 0 \\\ 0 & 8 \\\ \end{matrix} \right]=\left[ \begin{matrix} \text{a} & \text{b} \\\ \text{c} & \text{d} \\\ \end{matrix} \right]*\left[ \begin{matrix} \text{d} & -\text{b} \\\ -\text{c} & \text{a} \\\ \end{matrix} \right]
[80 08 ]=[adbcab+ab cdcdbc+ad ]\left[ \begin{matrix} 8 & 0 \\\ 0 & 8 \\\ \end{matrix} \right]=\left[ \begin{matrix} \text{ad}-\text{bc} & -\text{ab+ab} \\\ \text{cd}-\text{cd} & -\text{bc+ad} \\\ \end{matrix} \right]
[80 08 ]=[adbcO Oadbc ]\left[ \begin{matrix} 8 & 0 \\\ 0 & 8 \\\ \end{matrix} \right]=\left[ \begin{matrix} \text{ad}-\text{bc} & \text{O} \\\ \text{O} & \text{ad}-\text{bc} \\\ \end{matrix} \right]
From here on comparing the elements we get
ad − bd = 8 1
Now our objective is to find det A.
So, detA=ab cd \det \text{A}=\left| \begin{matrix} \text{a} & \text{b} \\\ \text{c} & \text{d} \\\ \end{matrix} \right|
= ad − bc
Now, from equation 1
ad − bc = 8 which is equal to the value of det A.

so, |A| = 8 answer.

Note: Students often make mistakes in the part where two matrix are multiplied, so be careful with it.
There is a direct formula to calculate A ⋅ adjA which is
A ⋅ |adjA| = |A| ⋅ I
so putting value in these, we can also solve the problem.