Question
Question: If 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) for all 𝑥 , 𝑦 ∈ R and 𝑓(5)= 2, 𝑓′(0) = 3, then using the definitio...
If 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) for all 𝑥 , 𝑦 ∈ R and 𝑓(5)= 2, 𝑓′(0) = 3, then using the definition of derivatives, find 𝑓′(5)
Answer
6
Explanation
Solution
The functional equation f(x+y)=f(x)f(y) implies f(0)=1. Using the definition of the derivative, f′(x)=limh→0hf(x+h)−f(x). Substituting the functional equation, f′(x)=limh→0hf(x)f(h)−f(x)=f(x)limh→0hf(h)−1. Since f(0)=1, the limit limh→0hf(h)−1 is f′(0). Thus, f′(x)=f(x)f′(0). For x=5, f′(5)=f(5)f′(0)=2×3=6.