Solveeit Logo

Question

Question: If 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) for all 𝑥 , 𝑦 ∈ R and 𝑓(5)= 2, 𝑓′(0) = 3, then using the definitio...

If 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) for all 𝑥 , 𝑦 ∈ R and 𝑓(5)= 2, 𝑓′(0) = 3, then using the definition of derivatives, find 𝑓′(5)

Answer

6

Explanation

Solution

The functional equation f(x+y)=f(x)f(y)f(x+y) = f(x)f(y) implies f(0)=1f(0)=1. Using the definition of the derivative, f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}. Substituting the functional equation, f(x)=limh0f(x)f(h)f(x)h=f(x)limh0f(h)1hf'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}. Since f(0)=1f(0)=1, the limit limh0f(h)1h\lim_{h \to 0} \frac{f(h) - 1}{h} is f(0)f'(0). Thus, f(x)=f(x)f(0)f'(x) = f(x)f'(0). For x=5x=5, f(5)=f(5)f(0)=2×3=6f'(5) = f(5)f'(0) = 2 \times 3 = 6.