Solveeit Logo

Question

Question: If for a real number \(x\), \(\left[ x \right]\) denotes the greatest integer less than or equal to ...

If for a real number xx, [x]\left[ x \right] denotes the greatest integer less than or equal to xx, then for any nN,[n+12]+[n+24]+[n+48]+[n+816]+......=n \in N,\left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{{n + 8}}{{16}}} \right] + ...... =
A. nn
B. n1n - 1
C. n+1n + 1
D. n+2n + 2

Explanation

Solution

Use the property of greatest integer function, [x]=[x2]+[x+12]\left[ x \right] = \left[ {\dfrac{x}{2}} \right] + \left[ {\dfrac{{x + 1}}{2}} \right] and expand the value of [n]\left[ n \right], where nn is a natural number. Write nn as [n2]+[n+12]\left[ {\dfrac{n}{2}} \right] + \left[ {\dfrac{{n + 1}}{2}} \right]. Then, expand [n2]\left[ {\dfrac{n}{2}} \right] by the same property and continue like this to get an equivalent expression.

Complete step by step solution:
We know that if [x]\left[ x \right] is a greatest integer less than or equal to xx, then we have [x]=[x2]+[x+12]\left[ x \right] = \left[ {\dfrac{x}{2}} \right] + \left[ {\dfrac{{x + 1}}{2}} \right]
Let us write the same definition for [n]\left[ n \right]
[n]=[n2]+[n+12]\left[ n \right] = \left[ {\dfrac{n}{2}} \right] + \left[ {\dfrac{{n + 1}}{2}} \right]
Since, nNn \in N, we can write this as,
n=[n+12]+[n2]n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{n}{2}} \right] eqn. (1)
Similarly, we can write,
[n2]=[n4]+[n2+12] [n2]=[n4]+[n+24]  \left[ {\dfrac{n}{2}} \right] = \left[ {\dfrac{n}{4}} \right] + \left[ {\dfrac{{\dfrac{n}{2} + 1}}{2}} \right] \\\ \Rightarrow \left[ {\dfrac{n}{2}} \right] = \left[ {\dfrac{n}{4}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] \\\
When we substitute the value of [n2]\left[ {\dfrac{n}{2}} \right] in equation (1), we will get,
n=[n+12]+[n+24]+[n4]n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{n}{4}} \right]
We will now similarly, expand [n4]\left[ {\dfrac{n}{4}} \right]
n=[n+12]+[n+24]+[n8]+[n4+12] n=[n+12]+[n+24]+[n+48]+[n8]  n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{n}{8}} \right] + \left[ {\dfrac{{\dfrac{n}{4} + 1}}{2}} \right] \\\ \Rightarrow n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{n}{8}} \right] \\\
And here, we can observe that if we continue like this, we will have,
n=[n+12]+[n+24]+[n+48]+[n+816]+.......n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{{n + 8}}{{16}}} \right] + .......
Thus, the given expression is equal to nn.

Hence, option A is the correct option.

Note:
We represent the greatest integer function as [x]\left[ x \right]. If a number is such that [4.2]\left[ {4.2} \right], then the value of the number is 4. Similarly, if we have [4]\left[ 4 \right], then it is equal to 4. Greatest integer function is also known as step-function.