Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If, for a positive integer n, the quadratic equation, x(x+1)+(x+1)(x+2)+....+(x+n1)(x+n)=10nx(x+1)+(x+1)(x+2)+....+(x + \overline{ n - 1}) (x+ n)=10n has two consecutive integral solutions, then nn is equal to :

A

9

B

10

C

11

D

12

Answer

11

Explanation

Solution

Rearranging equation, we get
nx^{2} + \left\\{1+3+5+....+\left(2n-1\right)\right\\}x + \left\\{1.2+2.3+...+\left(n-1\right)n\right\\} = 10\,n
nx2+n2x+(n1)n(n+1)3=10n\Rightarrow nx^{2}+n^{2}x+\frac{\left(n-1\right)n\left(n+1\right)}{3} = 10\,n
x2+nx+(n2313)=0\Rightarrow x^{2}+nx+\left(\frac{n^{2}-31}{3}\right) = 0
Given difference of roots = 1
αβ=1\Rightarrow \left|\alpha-\beta\right| = 1
\Rightarrow D = 1
n243(n231)=1\Rightarrow n^{2} - \frac{4}{3}\left(n^{2}-31\right) = 1
So, n=11n = 11