Question
Mathematics Question on Complex Numbers and Quadratic Equations
If, for a positive integer n, the quadratic equation, x(x+1)+(x+1)(x+2)+....+(x+n−1)(x+n)=10n has two consecutive integral solutions, then n is equal to :
A
9
B
10
C
11
D
12
Answer
11
Explanation
Solution
Rearranging equation, we get
nx^{2} + \left\\{1+3+5+....+\left(2n-1\right)\right\\}x + \left\\{1.2+2.3+...+\left(n-1\right)n\right\\} = 10\,n
⇒nx2+n2x+3(n−1)n(n+1)=10n
⇒x2+nx+(3n2−31)=0
Given difference of roots = 1
⇒∣α−β∣=1
⇒ D = 1
⇒n2−34(n2−31)=1
So, n=11