Question
Question: If for a first order reaction, the value of $A$ and $E_a$ are $4 \times 10^{13} s^{-1}$ and $98.6 kJ...
If for a first order reaction, the value of A and Ea are 4×1013s−1 and 98.6kJmol−1 respectively, then at what temperature will its half life period be 10 minutes?

330 K
300 K
330.95 K
311.15 K
311.15 K
Solution
The half-life period (t1/2) for a first-order reaction is related to the rate constant (k) by the equation:
t1/2=k0.693
Given t1/2=10 minutes =10×60=600 seconds. So, the rate constant k is:
k=6000.693=0.001155s−1=1.155×10−3s−1
The Arrhenius equation relates the rate constant (k), the pre-exponential factor (A), the activation energy (Ea), the gas constant (R), and the temperature (T):
k=Ae−Ea/RT
We can take the natural logarithm of both sides:
ln(k)=ln(A)−RTEa
Rearranging the equation to solve for T:
RTEa=ln(A)−ln(k)=ln(kA)
T=Rln(kA)Ea
Alternatively, using base-10 logarithm:
log10(k)=log10(A)−2.303RTEa
2.303RTEa=log10(A)−log10(k)=log10(kA)
T=2.303Rlog10(kA)Ea
We are given:
A=4×1013s−1
Ea=98.6kJmol−1=98.6×103Jmol−1
R=8.314JK−1mol−1
First, calculate kA:
kA=1.155×10−3s−14×1013s−1=1.1554×1013−(−3)=3.4632×1016
Now, calculate log10(kA):
log10(kA)=log10(3.4632×1016)=log10(3.4632)+log10(1016)
log10(3.4632)≈0.53945
log10(kA)≈0.53945+16=16.53945
Now, substitute the values into the formula for T:
T=2.303Rlog10(kA)Ea
T=2.303×8.314JK−1mol−1×16.5394598.6×103Jmol−1
T=19.147142×16.5394598600
T=316.65998600
T≈311.34K
Comparing this value with the given options:
A 330 K B 300 K C 330.95 K D 311.15 K
The calculated value 311.34 K is closest to option D (311.15 K). The slight difference might be due to rounding in the value of 0.693 or the value of R used. Using the value 0.6931 for ln(2) gives k=0.6931/600≈0.001155166.
log10(A/k)=log10(4×1013/0.001155166)=log10(34626886×109)=log10(3.4626886×1016)≈16.5394.
T=19.147142×16.539498600=316.6598600≈311.34K.
Using k=0.693/600 and log10(A/k)≈16.5395 as calculated before, the value is 311.34 K. Option D is the closest value.
The final answer is 311.15 K.