Solveeit Logo

Question

Question: If for a first order reaction, the value of $A$ and $E_a$ are $4 \times 10^{13} s^{-1}$ and $98.6 kJ...

If for a first order reaction, the value of AA and EaE_a are 4×1013s14 \times 10^{13} s^{-1} and 98.6kJmol198.6 kJ mol^{-1} respectively, then at what temperature will its half life period be 10 minutes?

A

330 K

B

300 K

C

330.95 K

D

311.15 K

Answer

311.15 K

Explanation

Solution

The half-life period (t1/2t_{1/2}) for a first-order reaction is related to the rate constant (kk) by the equation:

t1/2=0.693kt_{1/2} = \frac{0.693}{k}

Given t1/2=10t_{1/2} = 10 minutes =10×60=600= 10 \times 60 = 600 seconds. So, the rate constant kk is:

k=0.693600=0.001155s1=1.155×103s1k = \frac{0.693}{600} = 0.001155 \, s^{-1} = 1.155 \times 10^{-3} \, s^{-1}

The Arrhenius equation relates the rate constant (kk), the pre-exponential factor (AA), the activation energy (EaE_a), the gas constant (RR), and the temperature (TT):

k=AeEa/RTk = A e^{-E_a/RT}

We can take the natural logarithm of both sides:

ln(k)=ln(A)EaRT\ln(k) = \ln(A) - \frac{E_a}{RT}

Rearranging the equation to solve for TT:

EaRT=ln(A)ln(k)=ln(Ak)\frac{E_a}{RT} = \ln(A) - \ln(k) = \ln\left(\frac{A}{k}\right)

T=EaRln(Ak)T = \frac{E_a}{R \ln\left(\frac{A}{k}\right)}

Alternatively, using base-10 logarithm:

log10(k)=log10(A)Ea2.303RT\log_{10}(k) = \log_{10}(A) - \frac{E_a}{2.303 RT}

Ea2.303RT=log10(A)log10(k)=log10(Ak)\frac{E_a}{2.303 RT} = \log_{10}(A) - \log_{10}(k) = \log_{10}\left(\frac{A}{k}\right)

T=Ea2.303Rlog10(Ak)T = \frac{E_a}{2.303 R \log_{10}\left(\frac{A}{k}\right)}

We are given:

A=4×1013s1A = 4 \times 10^{13} \, s^{-1}

Ea=98.6kJmol1=98.6×103Jmol1E_a = 98.6 \, kJ \, mol^{-1} = 98.6 \times 10^3 \, J \, mol^{-1}

R=8.314JK1mol1R = 8.314 \, J \, K^{-1} \, mol^{-1}

First, calculate Ak\frac{A}{k}:

Ak=4×1013s11.155×103s1=41.155×1013(3)=3.4632×1016\frac{A}{k} = \frac{4 \times 10^{13} \, s^{-1}}{1.155 \times 10^{-3} \, s^{-1}} = \frac{4}{1.155} \times 10^{13 - (-3)} = 3.4632 \times 10^{16}

Now, calculate log10(Ak)\log_{10}\left(\frac{A}{k}\right):

log10(Ak)=log10(3.4632×1016)=log10(3.4632)+log10(1016)\log_{10}\left(\frac{A}{k}\right) = \log_{10}(3.4632 \times 10^{16}) = \log_{10}(3.4632) + \log_{10}(10^{16})

log10(3.4632)0.53945\log_{10}(3.4632) \approx 0.53945

log10(Ak)0.53945+16=16.53945\log_{10}\left(\frac{A}{k}\right) \approx 0.53945 + 16 = 16.53945

Now, substitute the values into the formula for TT:

T=Ea2.303Rlog10(Ak)T = \frac{E_a}{2.303 R \log_{10}\left(\frac{A}{k}\right)}

T=98.6×103Jmol12.303×8.314JK1mol1×16.53945T = \frac{98.6 \times 10^3 \, J \, mol^{-1}}{2.303 \times 8.314 \, J \, K^{-1} \, mol^{-1} \times 16.53945}

T=9860019.147142×16.53945T = \frac{98600}{19.147142 \times 16.53945}

T=98600316.659T = \frac{98600}{316.659}

T311.34KT \approx 311.34 \, K

Comparing this value with the given options:

A 330 K B 300 K C 330.95 K D 311.15 K

The calculated value 311.34 K is closest to option D (311.15 K). The slight difference might be due to rounding in the value of 0.693 or the value of R used. Using the value 0.6931 for ln(2)\ln(2) gives k=0.6931/6000.001155166k = 0.6931/600 \approx 0.001155166.

log10(A/k)=log10(4×1013/0.001155166)=log10(34626886×109)=log10(3.4626886×1016)16.5394\log_{10}(A/k) = \log_{10}(4 \times 10^{13} / 0.001155166) = \log_{10}(34626886 \times 10^9) = \log_{10}(3.4626886 \times 10^{16}) \approx 16.5394.

T=9860019.147142×16.5394=98600316.65311.34KT = \frac{98600}{19.147142 \times 16.5394} = \frac{98600}{316.65} \approx 311.34 K.

Using k=0.693/600k = 0.693/600 and log10(A/k)16.5395\log_{10}(A/k) \approx 16.5395 as calculated before, the value is 311.34 K. Option D is the closest value.

The final answer is 311.15 K.