Question
Question: If f(n) = \(\operatorname { Lim } _ { x \rightarrow 0 }\) \(\left( \left( 1 + \sin\frac{x}{2} \right...
If f(n) = Limx→0 ((1+sin2x)(1+sin22x).....(1+sin2nx))x1 thenn→∞Limf(n) =
A
1
B
e
C
0
D
∞
Answer
e
Explanation
Solution
f(n) = x→0Limex1((1+sin2x)(1+sin22x)....(1+sin2nx)−1)
= x→0Limex(1+(sin2x+sin22x+......+sin2nx)+(sin2xsin22x+......)+.....−1)
= x→0Lime(xsin2x+xsin(22x)+.......+sinx(2nx))
= e(21+221+.....2n1)
Sum of infinite G.P. = e1−211/2= e