Solveeit Logo

Question

Question: If $f(n) = \lim_{x \to 0} \left\{ \left(1 + \sin \frac{x}{2} \right) \left(1 + \sin \frac{x}{2^2} \r...

If f(n)=limx0{(1+sinx2)(1+sinx22)...(1+sinx2n)}1xf(n) = \lim_{x \to 0} \left\{ \left(1 + \sin \frac{x}{2} \right) \left(1 + \sin \frac{x}{2^2} \right) ... \left(1 + \sin \frac{x}{2^n} \right) \right\}^{\frac{1}{x}} then find limnf(n)\lim_{n \to \infty} f(n).

A

e

B

1

C

0

D

infinity

Answer

e

Explanation

Solution

The limit f(n)f(n) is evaluated by converting the 11^\infty indeterminate form to an exponential form elimx0ln(product)xe^{\lim_{x \to 0} \frac{\ln(\text{product})}{x}}. The logarithm of the product is expressed as a sum. Using Taylor series expansions for sinu\sin u and ln(1+u)\ln(1+u) for small uu, we find that limx0ln(1+sin(x/2k))x=12k\lim_{x \to 0} \frac{\ln(1+\sin(x/2^k))}{x} = \frac{1}{2^k}. Summing these terms from k=1k=1 to nn gives a geometric series, whose sum is 1(1/2)n1 - (1/2)^n. Thus, f(n)=e1(1/2)nf(n) = e^{1 - (1/2)^n}. Finally, taking the limit as nn \to \infty, since (1/2)n0(1/2)^n \to 0, the limit becomes e1=ee^1 = e.