Question
Question: If f(a) = \(\begin{bmatrix} \cos\alpha & \sin\alpha \\ - \sin\alpha & \cos\alpha \end{bmatrix}\) an...
If f(a) = $\begin{bmatrix} \cos\alpha & \sin\alpha \
- \sin\alpha & \cos\alpha \end{bmatrix}$ and a, b, g are angles of triangle
then f(a). f(b).f (g) =
A
I2
B
– I2
C
0
D
None
Answer
– I2
Explanation
Solution
Here f (a) . f (b) . f(g) =$\begin{bmatrix} \cos(\alpha + \beta + \gamma) & \sin(\alpha + \beta + \gamma) \
- \sin(\alpha + \beta + \gamma) & \cos(\alpha + \beta + \gamma) \end{bmatrix}$
= $\begin{bmatrix} \cos\pi & \sin\pi \
- \sin\pi & \cos\pi \end{bmatrix}=\begin{bmatrix}
- 1 & 0 \ 0 & - 1 \end{bmatrix}$ = –I2