Solveeit Logo

Question

Question: If f(a) = \(\begin{bmatrix} \cos\alpha & \sin\alpha \\ - \sin\alpha & \cos\alpha \end{bmatrix}\) an...

If f(a) = $\begin{bmatrix} \cos\alpha & \sin\alpha \

  • \sin\alpha & \cos\alpha \end{bmatrix}$ and a, b, g are angles of triangle

then f(a). f(b).f (g) =

A

I2

B

– I2

C

0

D

None

Answer

– I2

Explanation

Solution

Here f (a) . f (b) . f(g) =$\begin{bmatrix} \cos(\alpha + \beta + \gamma) & \sin(\alpha + \beta + \gamma) \

  • \sin(\alpha + \beta + \gamma) & \cos(\alpha + \beta + \gamma) \end{bmatrix}$

= $\begin{bmatrix} \cos\pi & \sin\pi \

  • \sin\pi & \cos\pi \end{bmatrix}==\begin{bmatrix}
  • 1 & 0 \ 0 & - 1 \end{bmatrix}$ = –I2