Solveeit Logo

Question

Question: If f(a) = \(\begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & ...

If f(a) = [cosαsinα0sinαcosα0001]\begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}, then [f(α)]1\left\lbrack f(\alpha) \right\rbrack^{- 1} =

A

f(a)

B

(f–a)

C

f(0)

D

None of these

Answer

(f–a)

Explanation

Solution

(f(a)–1 = $\begin{bmatrix} \cos\alpha & - \sin\alpha & 0 \

  • ( - \sin\alpha) & \cos\alpha & 0 \ 0 & 0 & 1 \end{bmatrix}$ = f (–a)