Question
Question: If \(f(a) = 3,f^{'}(a) = - 2,g(a) = - 1,g^{'}(a) = 4,\) then \(\lim_{x \rightarrow a}\frac{g(x)f(a)...
If f(a)=3,f′(a)=−2,g(a)=−1,g′(a)=4, then
limx→ax−ag(x)f(a)−g(a)f(x)=
A
– 5
B
10
C
– 10
D
5
Answer
10
Explanation
Solution
limx→ax−ag(x)f(a)−g(a)f(x). We add and subtract g(a)f(a) in numerator
= limx→ax−ag(x)f(a)−g(a)f(a)+g(a)f(a)−g(a)f(x)
= limx→af(a)[x−ag(x)−g(a)]−limx→ag(a)[x−af(x)−f(a)]
= f(a)limx→a[x−ag(x)−g(a)]−g(a)limx→a[x−af(x)−f(a)]
= f(a)g′(a)−g(a)f′(a) [by using first principle formula]
= 3.4 – (–1)(–2) = 12 – 2 = 10
Trick : x→alimx−ag(x)f(a)−g(a)f(x)
Using L–Hospital’s rule, Limit = limx→a1g′(x)f(a)−g(a)f′(x);
Limit =g′(a)f(a)−g(a)f′(a) = (4)(3)−(−1)(−2) = 12 – 2 = 10.