Solveeit Logo

Question

Question: If \(f(a) = 3,f^{'}(a) = - 2,g(a) = - 1,g^{'}(a) = 4,\) then \(\lim_{x \rightarrow a}\frac{g(x)f(a)...

If f(a)=3,f(a)=2,g(a)=1,g(a)=4,f(a) = 3,f^{'}(a) = - 2,g(a) = - 1,g^{'}(a) = 4, then

limxag(x)f(a)g(a)f(x)xa\lim_{x \rightarrow a}\frac{g(x)f(a) - g(a)f(x)}{x - a}=

A

– 5

B

10

C

– 10

D

5

Answer

10

Explanation

Solution

limxag(x)f(a)g(a)f(x)xa\lim_{x \rightarrow a}\frac{g(x)f(a) - g(a)f(x)}{x - a}. We add and subtract g(a)f(a)g(a)f(a) in numerator

= limxag(x)f(a)g(a)f(a)+g(a)f(a)g(a)f(x)xa\lim_{x \rightarrow a}\frac{g(x)f(a) - g(a)f(a) + g(a)f(a) - g(a)f(x)}{x - a}

= limxaf(a)[g(x)g(a)xa]limxag(a)[f(x)f(a)xa]\lim_{x \rightarrow a}f(a)\left\lbrack \frac{g(x) - g(a)}{x - a} \right\rbrack - \lim_{x \rightarrow a}g(a)\left\lbrack \frac{f(x) - f(a)}{x - a} \right\rbrack

= f(a)limxa[g(x)g(a)xa]g(a)limxa[f(x)f(a)xa]f(a)\lim_{x \rightarrow a}\left\lbrack \frac{g(x) - g(a)}{x - a} \right\rbrack - g(a)\lim_{x \rightarrow a}\left\lbrack \frac{f(x) - f(a)}{x - a} \right\rbrack

= f(a)g(a)g(a)f(a)f(a)g'(a) - g(a)f'(a) [by using first principle formula]

= 3.4 – (–1)(–2) = 12 – 2 = 10

Trick : limxag(x)f(a)g(a)f(x)xa\underset{\mathbf{x}\mathbf{\rightarrow}\mathbf{a}}{\mathbf{\lim}}\frac{\mathbf{g(x)f(a)}\mathbf{-}\mathbf{g(a)f(x)}}{\mathbf{x}\mathbf{-}\mathbf{a}}

Using L–Hospital’s rule, Limit = limxag(x)f(a)g(a)f(x)1\lim_{x \rightarrow a}\frac{g'(x)f(a) - g(a)f'(x)}{1};

Limit =g(a)f(a)g(a)f(a)g'(a)f(a) - g(a)f'(a) = (4)(3)(1)(2)(4)(3) - ( - 1)( - 2) = 12 – 2 = 10.