Solveeit Logo

Question

Question: If \(f(a) = 2,f'(a) = 1,g(a) = 1,g'(a) = 2,\) then \(\lim_{x \rightarrow a}\frac{g(x)f(a) - g(a)f(x...

If f(a)=2,f(a)=1,g(a)=1,g(a)=2,f(a) = 2,f'(a) = 1,g(a) = 1,g'(a) = 2, then

limxag(x)f(a)g(a)f(x)xa\lim_{x \rightarrow a}\frac{g(x)f(a) - g(a)f(x)}{x - a}equals

A

–3

B

13\frac{1}{3}

C

3

D

13- \frac{1}{3}

Answer

3

Explanation

Solution

Applying L – Hospital's rule, we get,

limxag(x)f(a)g(a)f(x)xa=limxag(x)f(a)g(a)f(x)1\lim_{x \rightarrow a}\frac{g(x)f(a) - g(a)f(x)}{x - a} = \lim_{x \rightarrow a}\frac{g^{'}(x)f(a) - g(a)f^{'}(x)}{1}

=g(a)f(a)g(a)f(a)=2×21×(1)=3.= g^{'}(a)f(a) - g(a)f^{'}(a) = 2 \times 2 - 1 \times (1) = 3.