Question
Question: If \(f(a) = 2\), \(f^{'}(a) = 1\), \(g(a) = - 3\), \(g^{'}(a) = - 1\), then \[\lim_{x \rightarrow a...
If f(a)=2, f′(a)=1, g(a)=−3, g′(a)=−1, then
limx→ax−af(a)g(x)−f(x)g(a)=
A
1
B
6
C
– 5
D
– 1
Answer
1
Explanation
Solution
x→alimx−af(a)g(x)−f(x)g(a) (00form)
Using L-Hospital’s rule, limx→a1−0f(a)g′(x)−f′(x)g(a)
=f(a)×g′(a)−f′(a)×g(a)=2×(−1)−1×(−3)=1.