Solveeit Logo

Question

Question: If \(f(a) = 2\), \(f^{'}(a) = 1\), \(g(a) = - 3\), \(g^{'}(a) = - 1\), then \[\lim_{x \rightarrow a...

If f(a)=2f(a) = 2, f(a)=1f^{'}(a) = 1, g(a)=3g(a) = - 3, g(a)=1g^{'}(a) = - 1, then

limxaf(a)g(x)f(x)g(a)xa=\lim_{x \rightarrow a}\frac{f(a)g(x) - f(x)g(a)}{x - a} =

A

1

B

6

C

– 5

D

– 1

Answer

1

Explanation

Solution

limxaf(a)g(x)f(x)g(a)xa\underset{x \rightarrow a}{\text{lim}}{}\frac{f(a)g(x) - f(x)g(a)}{x - a} (00form)\left( \frac{0}{0}\text{form} \right)

Using L-Hospital’s rule, limxaf(a)g(x)f(x)g(a)10\lim _ { x \rightarrow a } \frac { f ( a ) g ^ { \prime } ( x ) - f ^ { \prime } ( x ) g ( a ) } { 1 - 0 }

=f(a)×g(a)f(a)×g(a)=2×(1)1×(3)=1= f(a) \times g^{'}(a) - f^{'}(a) \times g(a) = 2 \times ( - 1) - 1 \times ( - 3) = 1.