Solveeit Logo

Question

Question: If $f_1(x) = ||x|-2|, f_n(x) = |f_{n-1}(x)-2|$ for all $n\ge2, n\in N$, and number of solutions of t...

If f1(x)=x2,fn(x)=fn1(x)2f_1(x) = ||x|-2|, f_n(x) = |f_{n-1}(x)-2| for all n2,nNn\ge2, n\in N, and number of solutions of the equation f2015(x)=2f_{2015}(x)=2 is a then the value of a100\frac{a}{100} is

Answer

20.17

Explanation

Solution

Let NnN_n be the number of solutions to the equation fn(x)=2f_n(x)=2.

The function is defined by f1(x)=x2f_1(x) = ||x|-2| and fn(x)=fn1(x)2f_n(x) = |f_{n-1}(x)-2| for n2n \ge 2. We want to find the number of solutions for f2015(x)=2f_{2015}(x)=2, which is a=N2015a = N_{2015}.

Let's analyze the solutions for small values of nn.

For n=1n=1: f1(x)=2    x2=2f_1(x)=2 \implies ||x|-2|=2. This gives x2=2|x|-2 = 2 or x2=2|x|-2 = -2. x=4    x=±4|x|=4 \implies x=\pm 4 (2 solutions). x=0    x=0|x|=0 \implies x=0 (1 solution). So, N1=2+1=3N_1 = 2+1=3.

For n=2n=2: f2(x)=2    f1(x)2=2f_2(x)=2 \implies |f_1(x)-2|=2. This gives f1(x)2=2f_1(x)-2 = 2 or f1(x)2=2f_1(x)-2 = -2. f1(x)=4f_1(x)=4 or f1(x)=0f_1(x)=0.

Let's find the number of solutions for f1(x)=4f_1(x)=4 and f1(x)=0f_1(x)=0. f1(x)=4    x2=4f_1(x)=4 \implies ||x|-2|=4. x2=4|x|-2 = 4 or x2=4|x|-2 = -4. x=6    x=±6|x|=6 \implies x=\pm 6 (2 solutions). x=2|x|=-2 (No solution since x0|x| \ge 0). Number of solutions for f1(x)=4f_1(x)=4 is 2.

f1(x)=0    x2=0f_1(x)=0 \implies ||x|-2|=0. x2=0    x=2    x=±2|x|-2 = 0 \implies |x|=2 \implies x=\pm 2 (2 solutions). Number of solutions for f1(x)=0f_1(x)=0 is 2.

The total number of solutions for f2(x)=2f_2(x)=2 is N2=(solutions for f1(x)=4)+(solutions for f1(x)=0)=2+2=4N_2 = (\text{solutions for } f_1(x)=4) + (\text{solutions for } f_1(x)=0) = 2+2=4.

For n=3n=3: f3(x)=2    f2(x)2=2f_3(x)=2 \implies |f_2(x)-2|=2. This gives f2(x)2=2f_2(x)-2 = 2 or f2(x)2=2f_2(x)-2 = -2. f2(x)=4f_2(x)=4 or f2(x)=0f_2(x)=0.

Let's find the number of solutions for f2(x)=4f_2(x)=4 and f2(x)=0f_2(x)=0. f2(x)=4    f1(x)2=4f_2(x)=4 \implies |f_1(x)-2|=4. f1(x)2=4f_1(x)-2 = 4 or f1(x)2=4f_1(x)-2 = -4. f1(x)=6f_1(x)=6 or f1(x)=2f_1(x)=-2. f1(x)=6    x2=6f_1(x)=6 \implies ||x|-2|=6. x2=6|x|-2=6 or x2=6|x|-2=-6. x=8    x=±8|x|=8 \implies x=\pm 8 (2 solutions). x=4|x|=-4 (No solution). Number of solutions for f1(x)=6f_1(x)=6 is 2. f1(x)=2    x2=2f_1(x)=-2 \implies ||x|-2|=-2 (No solution). The number of solutions for f2(x)=4f_2(x)=4 is 2.

f2(x)=0    f1(x)2=0f_2(x)=0 \implies |f_1(x)-2|=0. f1(x)2=0    f1(x)=2f_1(x)-2=0 \implies f_1(x)=2. The number of solutions for f2(x)=0f_2(x)=0 is the same as the number of solutions for f1(x)=2f_1(x)=2, which is N1=3N_1=3.

The total number of solutions for f3(x)=2f_3(x)=2 is N3=(solutions for f2(x)=4)+(solutions for f2(x)=0)=2+3=5N_3 = (\text{solutions for } f_2(x)=4) + (\text{solutions for } f_2(x)=0) = 2+3=5.

Let's summarize the number of solutions for fn(x)=2f_n(x)=2: N1=3N_1=3 N2=4N_2=4 N3=5N_3=5

It appears that Nn=n+2N_n = n+2. Let's verify this pattern. fn(x)=2    fn1(x)2=2    fn1(x)=4f_n(x)=2 \implies |f_{n-1}(x)-2|=2 \implies f_{n-1}(x)=4 or fn1(x)=0f_{n-1}(x)=0. Nn=(solutions for fn1(x)=4)+(solutions for fn1(x)=0)N_n = (\text{solutions for } f_{n-1}(x)=4) + (\text{solutions for } f_{n-1}(x)=0).

Let's find the number of solutions for fk(x)=cf_k(x)=c where c>2c>2. fk(x)=c    fk1(x)2=c    fk1(x)=c+2f_k(x)=c \implies |f_{k-1}(x)-2|=c \implies f_{k-1}(x)=c+2 or fk1(x)=2cf_{k-1}(x)=2-c. Since c>2c>2, c+2>4c+2>4 and 2c<02-c<0. fk1(x)=c+2f_{k-1}(x)=c+2. Since c+2>2c+2>2, this equation might have solutions. fk1(x)=2cf_{k-1}(x)=2-c. Since 2c<02-c<0 and fk1(x)0f_{k-1}(x) \ge 0, this equation has no solutions. So, the number of solutions for fk(x)=cf_k(x)=c with c>2c>2 is the same as the number of solutions for fk1(x)=c+2f_{k-1}(x)=c+2.

Consider fn(x)=cf_n(x)=c for c>2c>2. fn(x)=c    fn1(x)=c+2    fn2(x)=c+4    ...    f1(x)=c+2(n1)f_n(x)=c \implies f_{n-1}(x)=c+2 \implies f_{n-2}(x)=c+4 \implies ... \implies f_1(x)=c+2(n-1). The number of solutions for fn(x)=cf_n(x)=c (with c>2c>2) is the same as the number of solutions for f1(x)=c+2(n1)f_1(x)=c+2(n-1). Since c>2c>2, c+2(n1)>2+2(n1)=2n>2c+2(n-1) > 2+2(n-1) = 2n > 2 for n1n \ge 1. f1(x)=c+2(n1)    x2=c+2(n1)f_1(x)=c+2(n-1) \implies ||x|-2|=c+2(n-1). x2=c+2(n1)|x|-2 = c+2(n-1) or x2=(c+2(n1))|x|-2 = -(c+2(n-1)). x=c+2n|x| = c+2n or x=2c2(n1)=2c2n+2=4c2n|x| = 2-c-2(n-1) = 2-c-2n+2 = 4-c-2n. Since c>2c>2, c+2n>2n>0c+2n > 2n > 0. So x=c+2n|x|=c+2n gives x=±(c+2n)x=\pm (c+2n) (2 solutions). Since c>2c>2 and n1n \ge 1, c2+ϵc \ge 2+\epsilon for some ϵ>0\epsilon>0. 4c2n4(2+ϵ)2=2ϵ2n<04-c-2n \le 4-(2+\epsilon)-2 = 2-\epsilon-2n < 0 for n1n \ge 1. So x=4c2n|x|=4-c-2n has no solutions. Thus, for any c>2c>2, the number of solutions for fn(x)=cf_n(x)=c is always 2 for n1n \ge 1. In particular, the number of solutions for fn1(x)=4f_{n-1}(x)=4 is 2 for n11n-1 \ge 1, i.e., n2n \ge 2.

Now let's find the number of solutions for fk(x)=0f_k(x)=0. Let this be MkM_k. fk(x)=0    fk1(x)2=0    fk1(x)2=0    fk1(x)=2f_k(x)=0 \implies |f_{k-1}(x)-2|=0 \implies f_{k-1}(x)-2=0 \implies f_{k-1}(x)=2. So, Mk=Nk1M_k = N_{k-1} for k2k \ge 2.

Now we can write the recurrence for NnN_n: For n2n \ge 2, Nn=(solutions for fn1(x)=4)+(solutions for fn1(x)=0)N_n = (\text{solutions for } f_{n-1}(x)=4) + (\text{solutions for } f_{n-1}(x)=0). Since n2n \ge 2, n11n-1 \ge 1, so the number of solutions for fn1(x)=4f_{n-1}(x)=4 is 2. Nn=2+(solutions for fn1(x)=0)=2+Mn1N_n = 2 + (\text{solutions for } f_{n-1}(x)=0) = 2 + M_{n-1}. For n3n \ge 3, Mn1=Nn2M_{n-1} = N_{n-2}. So, for n3n \ge 3, Nn=2+Nn2N_n = 2 + N_{n-2}.

We have N1=3N_1=3 and N2=4N_2=4. Using the recurrence Nn=Nn2+2N_n = N_{n-2} + 2 for n3n \ge 3: N3=N1+2=3+2=5N_3 = N_1 + 2 = 3+2=5. (Matches our calculation) N4=N2+2=4+2=6N_4 = N_2 + 2 = 4+2=6. N5=N3+2=5+2=7N_5 = N_3 + 2 = 5+2=7. The pattern Nn=n+2N_n = n+2 holds for n=1,2,3,4,5n=1, 2, 3, 4, 5.

Let's prove Nn=n+2N_n=n+2 by induction for n1n \ge 1. Base cases: N1=3=1+2N_1=3=1+2, N2=4=2+2N_2=4=2+2. The formula holds for n=1,2n=1, 2. Assume Nk=k+2N_k=k+2 for all 1km1 \le k \le m, where m2m \ge 2. Consider Nm+1N_{m+1}. Since m2m \ge 2, m+13m+1 \ge 3. Using the recurrence relation Nm+1=N(m+1)2+2=Nm1+2N_{m+1} = N_{(m+1)-2} + 2 = N_{m-1} + 2. By the induction hypothesis, Nm1=(m1)+2=m+1N_{m-1} = (m-1)+2 = m+1 since m11m-1 \ge 1. So, Nm+1=(m+1)+2=m+3N_{m+1} = (m+1) + 2 = m+3. The formula Nn=n+2N_n=n+2 holds for n=m+1n=m+1. By induction, Nn=n+2N_n=n+2 for all n1n \ge 1.

We need to find the number of solutions for f2015(x)=2f_{2015}(x)=2, which is a=N2015a = N_{2015}. Using the formula Nn=n+2N_n=n+2, we have a=N2015=2015+2=2017a = N_{2015} = 2015+2 = 2017.

We are asked to find the value of a100\frac{a}{100}. a100=2017100=20.17\frac{a}{100} = \frac{2017}{100} = 20.17.