Question
Question: If $f^3(x)-3x^2f(x)+x^3=0$, then $\int \frac{f(x)}{x}dx$ is equal to:...
If f3(x)−3x2f(x)+x3=0, then ∫xf(x)dx is equal to:

A
f(x)+c
B
-f(x)+c
C
2f(x)+c
D
xf'(x)+c
Answer
f(x)+c, xf'(x)+c
Explanation
Solution
The given equation is f3(x)−3x2f(x)+x3=0. Dividing by x3 (assuming x=0), we get: (xf(x))3−3(xf(x))+1=0 Let y(x)=xf(x). Then y(x)3−3y(x)+1=0. If f(x) is a differentiable function, then y(x) must be a constant, say k, where k is a root of t3−3t+1=0. Thus, xf(x)=k, which implies f(x)=kx. Now, we compute the integral: ∫xf(x)dx=∫xkxdx=∫kdx=kx+c Since f(x)=kx, the integral is f(x)+c. Also, if f(x)=kx, then f′(x)=k. Therefore, xf′(x)+c=x(k)+c=kx+c. Both f(x)+c and xf′(x)+c are equal to kx+c.