Solveeit Logo

Question

Question: If $f^3(x)-3x^2f(x)+x^3=0$, then $\int \frac{f(x)}{x}dx$ is equal to:...

If f3(x)3x2f(x)+x3=0f^3(x)-3x^2f(x)+x^3=0, then f(x)xdx\int \frac{f(x)}{x}dx is equal to:

A

f(x)+c

B

-f(x)+c

C

2f(x)+c

D

xf'(x)+c

Answer

f(x)+c, xf'(x)+c

Explanation

Solution

The given equation is f3(x)3x2f(x)+x3=0f^3(x)-3x^2f(x)+x^3=0. Dividing by x3x^3 (assuming x0x \neq 0), we get: (f(x)x)33(f(x)x)+1=0\left(\frac{f(x)}{x}\right)^3 - 3\left(\frac{f(x)}{x}\right) + 1 = 0 Let y(x)=f(x)xy(x) = \frac{f(x)}{x}. Then y(x)33y(x)+1=0y(x)^3 - 3y(x) + 1 = 0. If f(x)f(x) is a differentiable function, then y(x)y(x) must be a constant, say kk, where kk is a root of t33t+1=0t^3 - 3t + 1 = 0. Thus, f(x)x=k\frac{f(x)}{x} = k, which implies f(x)=kxf(x) = kx. Now, we compute the integral: f(x)xdx=kxxdx=kdx=kx+c\int \frac{f(x)}{x}dx = \int \frac{kx}{x}dx = \int k \, dx = kx + c Since f(x)=kxf(x) = kx, the integral is f(x)+cf(x)+c. Also, if f(x)=kxf(x) = kx, then f(x)=kf'(x) = k. Therefore, xf(x)+c=x(k)+c=kx+cxf'(x)+c = x(k)+c = kx+c. Both f(x)+cf(x)+c and xf(x)+cxf'(x)+c are equal to kx+ckx+c.