Solveeit Logo

Question

Question: If f:\[1, ∞) → \[2, ∞) is given by f(x) = \(x + \frac{1}{x}\)then f<sup>−1</sup>(x) equals...

If f:[1, ∞) → [2, ∞) is given by f(x) = x+1xx + \frac{1}{x}then f−1(x) equals

A

(x+x24)2\frac{\left( x + \sqrt{x^{2} - 4} \right)}{2}

B

x(1+x2)\frac{x}{\left( 1 + x^{2} \right)}

C

(xx24)2\frac{\left( x - \sqrt{x^{2} - 4} \right)}{2}

D

(1+x24)\left( 1 + \sqrt{x^{2} - 4} \right)

Answer

(x+x24)2\frac{\left( x + \sqrt{x^{2} - 4} \right)}{2}

Explanation

Solution

f: [1, ∞) → [2, ∞)

F(x) x+1x=yx + \frac{1}{x} = y ⇒ x2- yx + 1 = 0 ⇒ x y±y242\frac{y \pm \sqrt{y^{2} - 4}}{2}

But {x>1y>2 \left\{ \begin{matrix} x > 1 \\ y > 2 \end{matrix} \right.\ x=y+y242x = \frac{y + \sqrt{y^{2} - 4}}{2}

f1(x)=x+x242f^{- 1}(x) = \frac{x + \sqrt{x^{2} - 4}}{2}

∴ ‘A’ is the correct alternative