Solveeit Logo

Question

Question: If f(1) = 1, f ′(1) = 2 then \(f(x) = \left\{ \begin{matrix} \tan^{- 1}x & , & |x| \leq 1 \\ \frac{1...

If f(1) = 1, f ′(1) = 2 then f(x)={tan1x,x112(x1),x>1f(x) = \left\{ \begin{matrix} \tan^{- 1}x & , & |x| \leq 1 \\ \frac{1}{2}(|x| - 1) & , & |x| > 1 \end{matrix} \right. R - { 0} =

A

2

B

1

C

3

D

4

Answer

2

Explanation

Solution

limx1\lim _ { x \rightarrow 1 } ; 00\frac { 0 } { 0 } form

limx1\lim _ { x \rightarrow 1 } = f(1)f(1)\frac { \mathrm { f } ^ { \prime } ( 1 ) } { \sqrt { \mathrm { f } ( 1 ) } } . 1\sqrt { 1 } = 2