Solveeit Logo

Question

Question: If $f(0) = 1, f(2) = 3$ and $f'(2) = 5$, then the value of the definite integral $\int_0^1 x f''(2x)...

If f(0)=1,f(2)=3f(0) = 1, f(2) = 3 and f(2)=5f'(2) = 5, then the value of the definite integral 01xf(2x)dx\int_0^1 x f''(2x) dx is equal to ______.

Answer

2

Explanation

Solution

To evaluate the definite integral 01xf(2x)dx\int_0^1 x f''(2x) dx, we use the method of integration by parts.

The formula for integration by parts is udv=uvvdu\int u \, dv = uv - \int v \, du.

Let's choose our uu and dvdv: Let u=xu = x Then du=dxdu = dx

Let dv=f(2x)dxdv = f''(2x) dx To find vv, we integrate dvdv: v=f(2x)dxv = \int f''(2x) dx To solve this integral, let t=2xt = 2x. Then dt=2dxdt = 2 dx, which implies dx=12dtdx = \frac{1}{2} dt. Substituting these into the integral for vv: v=f(t)(12)dt=12f(t)dt=12f(t)=12f(2x)v = \int f''(t) \left(\frac{1}{2}\right) dt = \frac{1}{2} \int f''(t) dt = \frac{1}{2} f'(t) = \frac{1}{2} f'(2x).

Now, apply the integration by parts formula to the definite integral: 01xf(2x)dx=[x12f(2x)]010112f(2x)dx\int_0^1 x f''(2x) dx = \left[ x \cdot \frac{1}{2} f'(2x) \right]_0^1 - \int_0^1 \frac{1}{2} f'(2x) dx

Let's evaluate the first term: [x2f(2x)]01=(12f(21))(02f(20))\left[ \frac{x}{2} f'(2x) \right]_0^1 = \left( \frac{1}{2} f'(2 \cdot 1) \right) - \left( \frac{0}{2} f'(2 \cdot 0) \right) =12f(2)0= \frac{1}{2} f'(2) - 0 We are given f(2)=5f'(2) = 5. So, the first term is 125=52\frac{1}{2} \cdot 5 = \frac{5}{2}.

Now, let's evaluate the second integral: 0112f(2x)dx\int_0^1 \frac{1}{2} f'(2x) dx. Again, use the substitution t=2xt = 2x, so dt=2dxdt = 2 dx, which means dx=12dtdx = \frac{1}{2} dt. The limits of integration also change: When x=0x=0, t=2(0)=0t = 2(0) = 0. When x=1x=1, t=2(1)=2t = 2(1) = 2. So, the integral becomes: 0212f(t)(12)dt=1402f(t)dt\int_0^2 \frac{1}{2} f'(t) \left(\frac{1}{2}\right) dt = \frac{1}{4} \int_0^2 f'(t) dt We know that f(t)dt=f(t)\int f'(t) dt = f(t). So, 1402f(t)dt=14[f(t)]02=14(f(2)f(0))\frac{1}{4} \int_0^2 f'(t) dt = \frac{1}{4} [f(t)]_0^2 = \frac{1}{4} (f(2) - f(0)). We are given f(2)=3f(2) = 3 and f(0)=1f(0) = 1. So, the second term is 14(31)=14(2)=12\frac{1}{4} (3 - 1) = \frac{1}{4} (2) = \frac{1}{2}.

Finally, combine the results from the two parts: 01xf(2x)dx=First TermSecond Term\int_0^1 x f''(2x) dx = \text{First Term} - \text{Second Term} 01xf(2x)dx=5212\int_0^1 x f''(2x) dx = \frac{5}{2} - \frac{1}{2} 01xf(2x)dx=42=2\int_0^1 x f''(2x) dx = \frac{4}{2} = 2.

The final answer is 2\boxed{2}.

Explanation of the solution: The integral 01xf(2x)dx\int_0^1 x f''(2x) dx is solved using integration by parts.

  1. Set u=xu=x and dv=f(2x)dxdv=f''(2x)dx.
  2. Calculate du=dxdu=dx and v=12f(2x)v=\frac{1}{2}f'(2x).
  3. Apply the integration by parts formula: [x2f(2x)]010112f(2x)dx\left[ \frac{x}{2} f'(2x) \right]_0^1 - \int_0^1 \frac{1}{2} f'(2x) dx.
  4. Evaluate the first term using f(2)=5f'(2)=5: 12f(2)0=52\frac{1}{2}f'(2) - 0 = \frac{5}{2}.
  5. Evaluate the second integral using substitution t=2xt=2x: 1402f(t)dt=14[f(t)]02\frac{1}{4} \int_0^2 f'(t) dt = \frac{1}{4} [f(t)]_0^2.
  6. Use f(2)=3f(2)=3 and f(0)=1f(0)=1 for the second term: 14(f(2)f(0))=14(31)=12\frac{1}{4}(f(2)-f(0)) = \frac{1}{4}(3-1) = \frac{1}{2}.
  7. Subtract the second term from the first: 5212=2\frac{5}{2} - \frac{1}{2} = 2.