Solveeit Logo

Question

Quantitative Aptitude Question on Relations and Functions

If f(x+y)=f(x)f(y)f(x+y)=f(x)f(y) and f(5)=4f(5)=4, then f(10)f(10)f(10)-f(-10) is equal to

A

0

B

15.9375

C

3

D

14.0625

Answer

15.9375

Explanation

Solution

The correct answer is (B): 15.937515.9375

Given f(x+y)=f(x)f(y)f(x+y) = f(x)f(y)

f(x)=ax⇒ f(x) = ax (where a is constant )

Given, f(5)=4a5=4a=225f(5)=4 ⇒ a^5 = 4⇒ a = 2^{\frac{2}{5}}

f(10)f(10)=a10a10=(225)10(225)10f(10)-f(-10) = a^{10}-a^{-10}=\bigg(2^{\frac{2}{5}}\bigg)^{10}-\bigg(2^{\frac{2}{5}}\bigg)^{-10}

= 2424=16116=15.93752^4-2^{-4} = 16-\frac{1}{16} = 15.9375