Solveeit Logo

Question

Question: If f(x+y) = 2f(x)f(y) where f’(0) = 3 and f(4) = 2, then f’(4) equals [a] 6 [b] 12 [c] 4 [d]...

If f(x+y) = 2f(x)f(y) where f’(0) = 3 and f(4) = 2, then f’(4) equals
[a] 6
[b] 12
[c] 4
[d] 3

Explanation

Solution

Use the fact that f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}. Using the functional equation write f(x+h)f\left( x+h \right) as 2f(x)f(h)2f\left( x \right)f\left( h \right). Put this value in the formula for f(x)f'\left( x \right). Also, substitute x = 0 in the formula to get the relation for f(0)f'\left( 0 \right). Using this find the equation for f(x)f'\left( x \right)and hence form a differential equation. Solve the differential equation for f(x) and hence find f(4)f'\left( 4 \right)
Alternatively put x = 0 and x = 4 alternately in the formula for f(x)f'\left( x \right) and solve the system of equations.

Complete step-by-step solution -
We have f(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right)
Put x = y = 0, we get
f(0)=2f(0)2f\left( 0 \right)=2f{{\left( 0 \right)}^{2}}
Hence (0) = 0 or f(0) =12=\dfrac{1}{2}
If f(0) = 0
Put x = x and y = 0, we get
f(x+0) = 2f(x)f(0) = 0
Since f’(0) = 3, f(0) =0 is rejected.
Hence f(0) =12=\dfrac{1}{2}
Hence we have f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}
Using f(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right), we get
f(x)=limh02f(x)f(h)f(x)h=f(x)limh02f(h)1hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2f\left( x \right)f\left( h \right)-f\left( x \right)}{h}=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2f\left( h \right)-1}{h}
Hence we have
f(x)=2f(x)limh0f(h)f(0)h=2f(x)f(0)f'\left( x \right)=2f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( h \right)-f\left( 0 \right)}{h}=2f\left( x \right)f'\left( 0 \right)
Since f(0)=3f'\left( 0 \right)=3, we have
f(x)=6f(x)f'\left( x \right)=6f\left( x \right)
Dividing both sides by f(x) and integrating we get
d(f(x))f(x)=6dx ln(f(x))=6x+C f(x)=Ae6x \begin{aligned} & \int{\dfrac{d\left( f\left( x \right) \right)}{f\left( x \right)}}=\int{6dx} \\\ & \Rightarrow \ln \left( f\left( x \right) \right)=6x+C \\\ & \Rightarrow f\left( x \right)=A{{e}^{6x}} \\\ \end{aligned}
f(0) =12=\dfrac{1}{2}, we have
A=12A=\dfrac{1}{2}
But f(4) = 2,
Hence this function does not exist.
If such a function existed, we have f(4)=2f(4)f(0)=2×2×3=12f'\left( 4 \right)=2f\left( 4 \right)f'\left( 0 \right)=2\times 2\times 3=12
Hence option [b] is correct.

Note: We can derive the above equation directly.
Differentiating w.r.t x keeping y as constant, we get
f(x+y)=2f(x)f(y)f'\left( x+y \right)=2f'\left( x \right)f\left( y \right)
Put x = 0, we get
f(y)=2f(0)f(y)f'\left( y \right)=2f'\left( 0 \right)f\left( y \right), which is the same equation as obtained above.
Although mentioned above, such a function does not exist.