Solveeit Logo

Question

Mathematics Question on Application of derivatives

If f(x)=xex(1x)f (x) = xe^{x(1-x)} , then f (x) is

A

increasing on [-1/2, 1]

B

decreasing on R

C

increasing on R

D

decreasing on [-1/2, 1]

Answer

increasing on [-1/2, 1]

Explanation

Solution

The correct option is(A): increasing on [-1/2, 1]

f(x)=xex(1x)f (x) = xe^{x (1 - x)}
f(x)=ex(1x)+(12x)xex(1x)\Rightarrow \, f'(x) = e^{x (1-x)} + (1 - 2x) x e^{x (1-x)}
=ex(1x)(2x2x1)=ex(1x)(2x+1)(x1)= - e^{x (1-x) } (2x^2 - x - 1) = - e^{x (1 - x) } (2x + 1) (x - 1)
\therefore f (x) is increasing on [-1/2, 1]